1,437 research outputs found

    Raise and Peel Models of fluctuating interfaces and combinatorics of Pascal's hexagon

    Full text link
    The raise and peel model of a one-dimensional fluctuating interface (model A) is extended by considering one source (model B) or two sources (model C) at the boundaries. The Hamiltonians describing the three processes have, in the thermodynamic limit, spectra given by conformal field theory. The probability of the different configurations in the stationary states of the three models are not only related but have interesting combinatorial properties. We show that by extending Pascal's triangle (which gives solutions to linear relations in terms of integer numbers), to an hexagon, one obtains integer solutions of bilinear relations. These solutions give not only the weights of the various configurations in the three models but also give an insight to the connections between the probability distributions in the stationary states of the three models. Interestingly enough, Pascal's hexagon also gives solutions to a Hirota's difference equation.Comment: 33 pages, an abstract and an introduction are rewritten, few references are adde

    A refined Razumov-Stroganov conjecture II

    Full text link
    We extend a previous conjecture [cond-mat/0407477] relating the Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to refined numbers of alternating sign matrices. By considering the O(1) loop model on a semi-infinite cylinder with dislocations, we obtain the generating function for alternating sign matrices with prescribed positions of 1's on their top and bottom rows. This seems to indicate a deep correspondence between observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf macro

    Supersymmetry on Jacobstahl lattices

    Full text link
    It is shown that the construction of Yang and Fendley (2004 {\it J. Phys. A: Math.Gen. {\bf 37}} 8937) to obtainsupersymmetric systems, leads not to the open XXZ chain with anisotropy Δ=−1/2\Delta =-{1/2} but to systems having dimensions given by Jacobstahl sequences.For each system the ground state is unique. The continuum limit of the spectra of the Jacobstahl systems coincide, up to degeneracies, with that of the Uq(sl(2))U_q(sl(2)) invariant XXZ chain for q=exp⁥(iπ/3)q=\exp(i\pi/3). The relation between the Jacobstahl systems and the open XXZ chain is explained.Comment: 6 pages, 0 figure

    Chronic GLP-1 receptor activation by exendin-4 induces expansion of pancreatic duct glands in rats and accelerates formation of dysplastic lesions and chronic pancreatitis in the Kras(G12D) mouse model.

    Get PDF
    Pancreatic duct glands (PDGs) have been hypothesized to give rise to pancreatic intraepithelial neoplasia (PanIN). Treatment with the glucagon-like peptide (GLP)-1 analog, exendin-4, for 12 weeks induced the expansion of PDGs with mucinous metaplasia and columnar cell atypia resembling low-grade PanIN in rats. In the pancreata of Pdx1-Cre; LSL-Kras(G12D) mice, exendin-4 led to acceleration of the disruption of exocrine architecture and chronic pancreatitis with mucinous metaplasia and increased formation of murine PanIN lesions. PDGs and PanIN lesions in rodent and human pancreata express the GLP-1 receptor. Exendin-4 induced proproliferative signaling pathways in human pancreatic duct cells, cAMP-protein kinase A and mitogen-activated protein kinase phosphorylation of cAMP-responsive element-binding protein, and increased cyclin D1 expression. These GLP-1 effects were more pronounced in the presence of an activating mutation of Kras and were inhibited by metformin. These data reveal that GLP-1 mimetic therapy may induce focal proliferation in the exocrine pancreas and, in the context of exocrine dysplasia, may accelerate formation of neoplastic PanIN lesions and exacerbate chronic pancreatitis

    The pair annihilation reaction D + D --> 0 in disordered media and conformal invariance

    Full text link
    The raise and peel model describes the stochastic model of a fluctuating interface separating a substrate covered with clusters of matter of different sizes, and a rarefied gas of tiles. The stationary state is obtained when adsorption compensates the desorption of tiles. This model is generalized to an interface with defects (D). The defects are either adjacent or separated by a cluster. If a tile hits the end of a cluster with a defect nearby, the defect hops at the other end of the cluster changing its shape. If a tile hits two adjacent defects, the defect annihilate and are replaced by a small cluster. There are no defects in the stationary state. This model can be seen as describing the reaction D + D -->0, in which the particles (defects) D hop at long distances changing the medium and annihilate. Between the hops the medium also changes (tiles hit clusters changing their shapes). Several properties of this model are presented and some exact results are obtained using the connection of our model with a conformal invariant quantum chain.Comment: 8 pages, 12figure

    Finite-size left-passage probability in percolation

    Full text link
    We obtain an exact finite-size expression for the probability that a percolation hull will touch the boundary, on a strip of finite width. Our calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and the results are expressed in terms of symplectic characters. In the large size limit, we recover the scaling behaviour predicted by Schramm's left-passage formula. We also derive a general relation between the left-passage probability in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex boundary terms.Comment: 21 pages, 8 figure

    Construction of a Coordinate Bethe Ansatz for the asymmetric simple exclusion process with open boundaries

    Full text link
    The asymmetric simple exclusion process with open boundaries, which is a very simple model of out-of-equilibrium statistical physics, is known to be integrable. In particular, its spectrum can be described in terms of Bethe roots. The large deviation function of the current can be obtained as well by diagonalizing a modified transition matrix, that is still integrable: the spectrum of this new matrix can be also described in terms of Bethe roots for special values of the parameters. However, due to the algebraic framework used to write the Bethe equations in the previous works, the nature of the excitations and the full structure of the eigenvectors were still unknown. This paper explains why the eigenvectors of the modified transition matrix are physically relevant, gives an explicit expression for the eigenvectors and applies it to the study of atypical currents. It also shows how the coordinate Bethe Ansatz developped for the excitations leads to a simple derivation of the Bethe equations and of the validity conditions of this Ansatz. All the results obtained by de Gier and Essler are recovered and the approach gives a physical interpretation of the exceptional points The overlap of this approach with other tools such as the matrix Ansatz is also discussed. The method that is presented here may be not specific to the asymmetric exclusion process and may be applied to other models with open boundaries to find similar exceptional points.Comment: references added, one new subsection and corrected typo

    Refined Razumov-Stroganov conjectures for open boundaries

    Full text link
    Recently it has been conjectured that the ground-state of a Markovian Hamiltonian, with one boundary operator, acting in a link pattern space is related to vertically and horizontally symmetric alternating-sign matrices (equivalently fully-packed loop configurations (FPL) on a grid with special boundaries).We extend this conjecture by introducing an arbitrary boundary parameter. We show that the parameter dependent ground state is related to refined vertically symmetric alternating-sign matrices i.e. with prescribed configurations (respectively, prescribed FPL configurations) in the next to central row. We also conjecture a relation between the ground-state of a Markovian Hamiltonian with two boundary operators and arbitrary coefficients and some doubly refined (dependence on two parameters) FPL configurations. Our conjectures might be useful in the study of ground-states of the O(1) and XXZ models, as well as the stationary states of Raise and Peel models.Comment: 11 pages LaTeX, 8 postscript figure

    Conformal invariance and its breaking in a stochastic model of a fluctuating interface

    Full text link
    Using Monte-Carlo simulations on large lattices, we study the effects of changing the parameter uu (the ratio of the adsorption and desorption rates) of the raise and peel model. This is a nonlocal stochastic model of a fluctuating interface. We show that for 0<u<10<u<1 the system is massive, for u=1u=1 it is massless and conformal invariant. For u>1u>1 the conformal invariance is broken. The system is in a scale invariant but not conformal invariant phase. As far as we know it is the first example of a system which shows such a behavior. Moreover in the broken phase, the critical exponents vary continuously with the parameter uu. This stays true also for the critical exponent τ\tau which characterizes the probability distribution function of avalanches (the critical exponent DD staying unchanged).Comment: 22 pages and 20 figure

    Six - Vertex Model with Domain wall boundary conditions. Variable inhomogeneities

    Full text link
    We consider the six-vertex model with domain wall boundary conditions. We choose the inhomogeneities as solutions of the Bethe Ansatz equations. The Bethe Ansatz equations have many solutions, so we can consider a wide variety of inhomogeneities. For certain choices of the inhomogeneities we study arrow correlation functions on the horizontal line going through the centre. In particular we obtain a multiple integral representation for the emptiness formation probability that generalizes the known formul\ae for XXZ antiferromagnets.Comment: 12 pages, 1 figur
    • 

    corecore