The raise and peel model describes the stochastic model of a fluctuating
interface separating a substrate covered with clusters of matter of different
sizes, and a rarefied gas of tiles. The stationary state is obtained when
adsorption compensates the desorption of tiles. This model is generalized to an
interface with defects (D). The defects are either adjacent or separated by a
cluster. If a tile hits the end of a cluster with a defect nearby, the defect
hops at the other end of the cluster changing its shape. If a tile hits two
adjacent defects, the defect annihilate and are replaced by a small cluster.
There are no defects in the stationary state.
This model can be seen as describing the reaction D + D -->0, in which the
particles (defects) D hop at long distances changing the medium and annihilate.
Between the hops the medium also changes (tiles hit clusters changing their
shapes). Several properties of this model are presented and some exact results
are obtained using the connection of our model with a conformal invariant
quantum chain.Comment: 8 pages, 12figure