63 research outputs found

    The E. coli SRP: preferences of a targeting factor

    Get PDF
    AbstractResearch on the targeting of proteins to the cytoplasmic membrane of E. coli has mainly focused on the so-called `general secretory pathway' (GSP) which involves the Sec-proteins. Recently, evidence has been obtained for an alternative targeting pathway in E. coli which involves the signal recognition particle (SRP). The constituents of this SRP pathway in E. coli are homologous to those of the well-characterized eukaryotic SRP pathway, which is the main targeting pathway for both proteins translocated across and inserted into the endoplasmic reticulum membrane. However, until recently, no clear function could be assigned to the SRP in E. coli. New studies point to an important role of the E. coli SRP in the assembly of inner membrane proteins

    Cysteine-mediated decyanation of vitamin B12 by the predicted membrane transporter BtuM

    Get PDF
    Uptake of vitamin B12 is essential for many prokaryotes, but in most cases the membrane proteins involved are yet to be identified. We present the biochemical characterization and high-resolution crystal structure of BtuM, a predicted bacterial vitamin B12 uptake system. BtuM binds vitamin B12 in its base-off conformation, with a cysteine residue as axial ligand of the corrin cobalt ion. Spectroscopic analysis indicates that the unusual thiolate coordination allows for decyanation of vitamin B12. Chemical modification of the substrate is a property other characterized vitamin B12-transport proteins do not exhibit

    High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG

    Get PDF
    BACKGROUND: For membrane protein production, the Escherichia coli T7 RNA polymerase (T7 RNAP)-based protein production strain BL21(DE3) in combination with T7-promoter based expression vectors is widely used. Cells are routinely cultured in Lysogeny broth (LB medium) and expression of the chromosomally localized t7rnap gene is governed by the isopropyl-β-D-1-thiogalactopyranoside (IPTG) inducible lacUV5 promoter. The T7 RNAP drives the expression of the plasmid borne gene encoding the recombinant membrane protein. Production of membrane proteins in the cytoplasmic membrane rather than in inclusion bodies in a misfolded state is usually preferred, but often hampered due to saturation of the capacity of the Sec-translocon, resulting in low yields. RESULTS: Contrary to expectation we observed that omission of IPTG from BL21(DE3) cells cultured in LB medium can lead to significantly higher membrane protein production yields than when IPTG is added. In the complete absence of IPTG cultures stably produce membrane proteins in the cytoplasmic membrane, whereas upon the addition of IPTG membrane proteins aggregate in the cytoplasm and non-producing clones are selected for. Furthermore, in the absence of IPTG, membrane proteins are produced at a lower rate than in the presence of IPTG. These observations indicate that in the absence of IPTG the Sec-translocon capacity is not/hardly saturated, leading to enhanced membrane protein production yields in the cytoplasmic membrane. Importantly, for more than half of the targets tested the yields obtained using un-induced BL21(DE3) cells were higher than the yields obtained in the widely used membrane protein production strains C41(DE3) and C43(DE3). Since most secretory proteins reach the periplasm via the Sec-translocon, we also monitored the production of three secretory recombinant proteins in the periplasm of BL21(DE3) cells in the presence and absence of IPTG. For all three targets tested omitting IPTG led to the highest production levels in the periplasm. CONCLUSIONS: Omission of IPTG from BL21(DE3) cells cultured in LB medium provides a very cost- and time effective alternative for the production of membrane and secretory proteins. Therefore, we recommend that this condition is incorporated in membrane- and secretory protein production screens

    Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    Get PDF
    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived from the T7 RNA polymerase (P)-based BL21(DE3) protein production strain. In C41(DE3) and C43(DE3) mutations lowering t7rnap expression levels result in strongly reduced T7 RNAP accumulation levels. As a consequence membrane protein production stress is alleviated in the C41(DE3) and C43(DE3) strains, thereby increasing membrane protein yields. Here, we isolated Mutant56(DE3) from BL21(DE3) using a genetic screen designed to isolate BL21(DE3)-derived strains with mutations alleviating membrane protein production stress other than the ones in C41(DE3) and C43(DE3). The defining mutation of Mutant56(DE3) changes one amino acid in its T7 RNAP, which weakens the binding of the T7 RNAP to the T7 promoter governing target gene expression rather than lowering T7 RNAP levels. For most membrane proteins tested yields in Mutant56(DE3) were considerably higher than in C41(DE3) and C43(DE3). Thus, the isolation of Mutant56(DE3) shows that the evolution of BL21(DE3) can be promoted towards further enhanced membrane protein production

    Escherichia coli Can Adapt Its Protein Translocation Machinery for Enhanced Periplasmic Recombinant Protein Production

    Get PDF
    Recently, we engineered a tunable rhamnose promoter-based setup for the production of recombinant proteins in E. coli. This setup enabled us to show that being able to precisely set the production rate of a secretory recombinant protein is critical to enhance protein production yields in the periplasm. It is assumed that precisely setting the production rate of a secretory recombinant protein is required to harmonize its production rate with the protein translocation capacity of the cell. Here, using proteome analysis we show that enhancing periplasmic production of human Growth Hormone (hGH) using the tunable rhamnose promoter-based setup is accompanied by increased accumulation levels of at least three key players in protein translocation; the peripheral motor of the Sec-translocon (SecA), leader peptidase (LepB), and the cytoplasmic membrane protein integrase/chaperone (YidC). Thus, enhancing periplasmic hGH production leads to increased Sec-translocon capacity, increased capacity to cleave signal peptides from secretory proteins and an increased capacity of an alternative membrane protein biogenesis pathway, which frees up Sec-translocon capacity for protein secretion. When cells with enhanced periplasmic hGH production yields were harvested and subsequently cultured in the absence of inducer, SecA, LepB, and YidC levels went down again. This indicates that when using the tunable rhamnose-promoter system to enhance the production of a protein in the periplasm, E. coli can adapt its protein translocation machinery for enhanced recombinant protein production in the periplasm

    Mutagenesis-Based Characterization and Improvement of a Novel Inclusion Body Tag

    Get PDF
    Whereas, bacterial inclusion bodies (IBs) for long were regarded as undesirable aggregates emerging during recombinant protein production, they currently receive attention as promising nanoparticulate biomaterials with diverse applications in biotechnology and biomedicine. We previously identified ssTorA, a signal sequence that normally directs protein export via the Tat pathway in , as a tag that induces the accumulation of fused proteins into IBs under overexpression conditions. Here, we used targeted mutagenesis to identify features and motifs being either critical or dispensable for IB formation. We found that IB formation is neither related to the function of ssTorA as a Tat-signal sequence nor is it a general feature of this family of signal sequences. IB formation was inhibited by co-overexpression of ssTorA binding chaperones TorD and DnaK and by amino acid substitutions that affect the propensity of ssTorA to form an α-helix. Systematic deletion experiments identified a minimal region of ssTorA required for IB formation in the center of the signal sequence. Unbiased genetic screening of a library of randomly mutagenized ssTorA sequences for reduced aggregation properties allowed us to pinpoint residues that are critical to sustain insoluble expression. Together, the data point to possible mechanisms for the aggregation of ssTorA fusions. Additionally, they led to the design of a tag with superior IB-formation properties compared to the original ssTorA sequence

    Bicistronic Design-Based Continuous and High-Level Membrane Protein Production in Escherichia coil

    Get PDF
    Escherichia coli has been widely used as a platform microorganism for both membrane protein production and cell factory engineering. The current methods to produce membrane proteins in this organism require the induction of target gene expression and often result in unstable, low yields. Here, we present a method combining a constitutive promoter with a library of bicistronic design (BCD) elements, which enables inducer-free, tuned translation initiation for optimal protein production. Our system mediates stable, constitutive production of bacterial membrane proteins at yields that outperform those obtained with E. coli Lemo21(DE3), the current gold standard for bacterial membrane protein production. We envisage that the continuous, fine-tunable, and high-level production of membrane proteins by our method will greatly facilitate their study and their utilization in engineering cell factories.Peer reviewe

    A structurally informed autotransporter platform for efficient heterologous protein secretion and display.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The self-sufficient autotransporter (AT) pathway, ubiquitous in Gram-negative bacteria, combines a relatively simple protein secretion mechanism with a high transport capacity. ATs consist of a secreted passenger domain and a β-domain that facilitates transfer of the passenger across the cell-envelope. They have a great potential for the extracellular expression of recombinant proteins but their exploitation has suffered from the limited structural knowledge of carrier ATs. Capitalizing on its crystal structure, we have engineered the <it>Escherichia coli</it> AT Hemoglobin protease (Hbp) into a platform for the secretion and surface display of heterologous proteins, using the <it>Mycobacterium tuberculosis</it> vaccine target ESAT6 as a model protein.</p> <p>Results</p> <p>Based on the Hbp crystal structure, five passenger side domains were selected and one by one replaced by ESAT6, whereas a β-helical core structure (β-stem) was left intact. The resulting Hbp-ESAT6 chimeras were efficiently and stably secreted into the culture medium of <it>E. coli</it>. On the other hand, Hbp-ESAT6 fusions containing a truncated β-stem appeared unstable after translocation, demonstrating the importance of an intact β-stem. By interrupting the cleavage site between passenger and β-domain, Hbp-ESAT6 display variants were constructed that remain cell associated and facilitate efficient surface exposure of ESAT6 as judged by proteinase K accessibility and whole cell immuno-EM analysis. Upon replacement of the passenger side domain of an alternative AT, EspC, ESAT6 was also efficiently secreted, showing the approach is more generally applicable to ATs. Furthermore, Hbp-ESAT6 was efficiently displayed in an attenuated <it>Salmonella typhimurium</it> strain upon chromosomal integration of a single encoding gene copy, demonstrating the potential of the Hbp platform for live vaccine development.</p> <p>Conclusions</p> <p>We developed the first structurally informed AT platform for efficient secretion and surface display of heterologous proteins. The platform has potential with regard to the development of recombinant live vaccines and may be useful for other biotechnological applications that require high-level secretion or display of recombinant proteins by bacteria.</p
    corecore