11 research outputs found

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    Rapid cohort generation and analysis of disease spectrum of large animal model of cone dystrophy.

    Get PDF
    Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D) gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients

    Effects of environmental enrichment on cognitive performance of pigs in a spatial holeboard discrimination task

    No full text
    This study investigated the effects of environmental enrichment on the cognitive performance of female conventional farm (growing) pigs in a spatial holeboard task. Ten pairs of littermates matched for weight were used. From each litter, one piglet was randomly assigned to a barren environment; the other was assigned to an enriched environment from 4 weeks of age. The enriched environment was double the size of the barren environment, had a floor covered with straw, a rooting area filled with peat, and one of the four different enrichment toys which were exchanged daily. Starting at 11 weeks of age, all pigs were tested in a spatial holeboard discrimination task in which 4 out of 16 holes were baited. Furthermore, basal salivary cortisol levels of all pigs were determined after the end of all testing. All pigs were able to acquire the pattern of baited holes (acquisition phase, 40 trials) and the diagonally mirrored pattern (reversal phase, 20 trials). During the acquisition phase, the reference memory performance of the enriched-housed pigs was better than that of their barren-housed littermates, i.e. they reduced visits to the unbaited set of holes. During the reversal phase, enriched-housed pigs had a better general working memory performance than the barren-housed pigs as indicated by reduced revisits to holes already visited during a trial, irrespective of whether they were of the baited or the unbaited set. The enriched-housed pigs also searched for the hidden bait faster during both phases. The environments did not affect basal salivary cortisol levels. In conclusion, environmental enrichment slightly improved the cognitive performance of pigs in a spatial learning task. We hypothesise that the long period of habituation to and testing in the holeboard acted as enrichment that partially reduced the effects of barren housing
    corecore