2,050 research outputs found

    Black hole information, unitarity, and nonlocality

    Get PDF
    The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arises from ultra-planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simultaneous description of modes that have fallen into the black hole and outgoing Hawking modes can be given without appearance of a large kinematic invariant, or other dependence on ultra-planckian physics; a reliable argument for information loss thus has not been constructed. This suggests that strong gravitational dynamics is important. Such dynamics has been argued to be fundamentally nonlocal in extreme situations, such as those required to investigate the fate of information.Comment: 34 pages, 4 figures. Major revision of hep-th/0604047. v2: minor corrections and added referenc

    Locality in quantum gravity and string theory

    Full text link
    Breakdown of local physics in string theory at distances longer than the string scale is investigated. Such nonlocality would be expected to be visible in ultrahigh-energy scattering. The results of various approaches to such scattering are collected and examined. No evidence is found for non-locality from strings whose length grows linearly with the energy. However, local quantum field theory does apparently fail at scales determined by gravitational physics, particularly strong gravitational dynamics. This amplifies locality bound arguments that such failure of locality is a fundamental aspect of physics. This kind of nonlocality could be a central element of a possible loophole in the argument for information loss in black holes.Comment: 26 pages, 3 figures, harvmac. v2: minor changes to bring into accord with revised paper hep-th/060519

    Nonlocality vs. complementarity: a conservative approach to the information problem

    Full text link
    A proposal for resolution of the information paradox is that "nice slice" states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information *problem*, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.Comment: 11 pages of text and figures, + references. v2 minor text. v3 small revisions to match final journal versio

    High energy QCD scattering, the shape of gravity on an IR brane, and the Froissart bound

    Get PDF
    High-energy scattering in non-conformal gauge theories is investigated using the AdS/CFT dual string/gravity theory. It is argued that strong-gravity processes, such as black hole formation, play an important role in the dual dynamics. Further information about this dynamics is found by performing a linearized analysis of gravity for a mass near an infrared brane; this gives the far field approximation to black hole or other strong-gravity effects, and in particular allows us to estimate their shape. From this shape, one can infer a total scattering cross-section that grows with center of mass energy as ln^2 E, saturating the Froissart bound.Comment: 27 pages, 1 fig, harvmac. v2: references added, typos corrected v3: typo correcte

    Precursors, black holes, and a locality bound

    Full text link
    We revisit the problem of precursors in the AdS/CFT correspondence. Identification of the precursors is expected to improve our understanding of the tension between holography and bulk locality and of the resolution of the black hole information paradox. Previous arguments that the precursors are large, undecorated Wilson loops are found to be flawed. We argue that the role of precursors should become evident when one saturates a certain locality bound. The spacetime uncertainty principle is a direct consequence of this bound.Comment: 26 pages, 8 figs; reference added, minor clarification in sec. 2; incorrect draft mistakenly used in version

    Entropy in Black Hole Pair Production

    Get PDF
    Pair production of Reissner-Nordstrom black holes in a magnetic field can be described by a euclidean instanton. It is shown that the instanton amplitude contains an explicit factor of eA/4e^{A/4}, where AA is the area of the event horizon. This is consistent with the hypothesis that eA/4e^{A/4} measures the number of black hole states.Comment: 24 pages (harvmac l mode

    Numerical Analysis of Black Hole Evaporation

    Full text link
    Black hole formation/evaporation in two-dimensional dilaton gravity can be described, in the limit where the number NN of matter fields becomes large, by a set of second-order partial differential equations. In this paper we solve these equations numerically. It is shown that, contrary to some previous suggestions, black holes evaporate completely a finite time after formation. A boundary condition is required to evolve the system beyond the naked singularity at the evaporation endpoint. It is argued that this may be naturally chosen so as to restore the system to the vacuum. The analysis also applies to the low-energy scattering of SS-wave fermions by four-dimensional extremal, magnetic, dilatonic black holes.Comment: 10 pages, 9 figures in separate uuencoded fil

    Comments on information loss and remnants

    Full text link
    The information loss and remnant proposals for resolving the black hole information paradox are reconsidered. It is argued that in typical cases information loss implies energy loss, and thus can be thought of in terms of coupling to a spectrum of ``fictitious'' remnants. This suggests proposals for information loss that do not imply planckian energy fluctuations in the low energy world. However, if consistency of gravity prevents energy non-conservation, these remnants must then be considered to be real. In either case, the catastrophe corresponding to infinite pair production remains a potential problem. Using Reissner-Nordstrom black holes as a paradigm for a theory of remnants, it is argued that couplings in such a theory may give finite production despite an infinite spectrum. Evidence for this is found in analyzing the instanton for Schwinger production; fluctuations from the infinite number of states lead to a divergent stress tensor, spoiling the instanton calculation. Therefore naive arguements for infinite production fail.Comment: 30 pages (harvmac l mode) UCSBTH-93-35 (minor reference and typo corrections

    Soluble models in 2d dilaton gravity

    Get PDF
    A one-parameter class of simple models of two-dimensional dilaton gravity, which can be exactly solved including back-reaction effects, is investigated at both classical and quantum levels. This family contains the RST model as a special case, and it continuously interpolates between models having a flat (Rindler) geometry and a constant curvature metric with a non-trivial dilaton field. The processes of formation of black hole singularities from collapsing matter and Hawking evaporation are considered in detail. Various physical aspects of these geometries are discussed, including the cosmological interpretation.Comment: 15 pages, harvmac, 3 figure

    Information Loss and Anomalous Scattering

    Full text link
    The approach of 't Hooft to the puzzles of black hole evaporation can be applied to a simpler system with analogous features. The system is 1+11+1 dimensional electrodynamics in a linear dilaton background. Analogues of black holes, Hawking radiation and evaporation exist in this system. In perturbation theory there appears to be an information paradox but this gets resolved in the full quantum theory and there exists an exact SS-matrix, which is fully unitary and information conserving. 't Hooft's method gives the leading terms in a systematic approximation to the exact result.Comment: 18 pages, 3 figures (postscript files available soon on request), (earlier version got corrupted by mail system
    • …
    corecore