52 research outputs found

    Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Benzo[a]pyrene (BaP) is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR) induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by <sup>32</sup>P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA) changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP) 1A1 and CYP1B1, which are involved in BaP metabolism.</p> <p>Results</p> <p>Following BaP exposure, cells evaded <it>G1 </it>arrest and accumulated in <it>S</it>-phase. Higher levels of DNA damage occurred in <it>S</it>- and <it>G2/M</it>- compared with <it>G0/G1-</it>enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in <it>G1</it>, the ERK pathway in <it>G1 </it>and <it>S</it>, the Nrf2 pathway in <it>S </it>and <it>G2/M </it>and the Akt pathway in <it>G2/M</it>. An important finding was that higher levels of DNA damage in <it>S- </it>and <it>G2/M</it>-enriched cultures correlated with higher levels of <it>CYP1A1 </it>and <it>CYP1B1 </it>mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE), the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle.</p> <p>Conclusions</p> <p>This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell cycle. Our results suggest that growth kinetics within a target-cell population may be important determinants of susceptibility and response to a genotoxic agent.</p

    Identification through microarray gene expression analysis of cellular responses to benzo(a)pyrene and its diol-epoxide that are dependent or independent of p53

    Get PDF
    Human colon carcinoma cells (HCT116) differing in p53 status were exposed to benzo(a)pyrene (BaP) or anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) and their gene expression responses compared by complementary DNA microarray technology. Exposure of cells to BPDE for up to 24 h resulted in gene expression profiles more distinguishable by duration of exposure than by p53 status, although a subset of genes were identified that had significantly different expression in p53 wild-type (WT) cells relative to p53-null cells. Apoptotic signalling genes were up-regulated in p53-WT cells but not in p53-null cells and, consistent with this, reduced viability and caspase activity were also p53 dependent. BPDE modulated cell cycle and histone genes in both cell lines and, in agreement with this, both cell lines accumulated in S phase. In p53-WT cells, G(2) arrest was also evident, which was associated with accumulation of CDKN1A. Regardless of p53 status, exposure to BaP for up to 48 h had subtle effects on gene transcription and had no influence on cell viability or cell cycle. Interestingly, DNA adduct formation after BaP, but not BPDE, exposure was p53 dependent with 10-fold lower levels detected in p53-null cells. Other cell lines were investigated for BaP-DNA adduct formation and in these the effect of p53 knockdown was also to reduce adduct formation. Taken together, these results give further insight into the role of p53 in the response of human cells to BaP and BPDE and suggest that loss of this tumour suppressor can influence the metabolic activation of BaP

    Modification of Decay Constants of Superstring Axions: Effects of Flux Compactification and Axion Mixing

    Get PDF
    We study possibilities for lowering the decay constants of superstring axions. In the heterotic Calabi-Yau compactification, a localized model-dependent axion can appear at a nearly collapsing 2-cycle. The effect of flux can be used for generating warp factor suppression of the axion decay constant. We also point out that the hidden sector instanton potential much higher than the QCD instanton potential picks up the larger effective axion decay constant as that of the QCD axion. We show that this can be converted by introducing many hidden-sector quarks so that the decay constant of the QCD axion turns out to be much smaller than the string scale.Comment: 6 pages with 3 figures, revtex; figure added,section of axion mixing modifie

    High Energy QCD: Stringy Picture from Hidden Integrability

    Get PDF
    We discuss the stringy properties of high-energy QCD using its hidden integrability in the Regge limit and on the light-cone. It is shown that multi-colour QCD in the Regge limit belongs to the same universality class as superconformal N\cal{N}=2 SUSY YM with Nf=2NcN_f=2N_c at the strong coupling orbifold point. The analogy with integrable structure governing the low energy sector of N\cal{N}=2 SUSY gauge theories is used to develop the brane picture for the Regge limit. In this picture the scattering process is described by a single M2 brane wrapped around the spectral curve of the integrable spin chain and unifying hadrons and reggeized gluons involved in the process. New quasiclassical quantization conditions for the complex higher integrals of motion are suggested which are consistent with the SS-duality of the multi-reggeon spectrum. The derivation of the anomalous dimensions of the lowest twist operators is formulated in terms of the Riemann surfacesComment: 37 pages, 3 figure

    Is Quantum Spacetime Foam Unstable?

    Full text link
    A very simple wormhole geometry is considered as a model of a mode of topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of the hole reduces to quantum mechanics of one variable, throat radius, and admits a WKB analysis. The hole is quantum-mechanically unstable: It has no bound states. Wormhole wave functions must eventually leak to large radii. This suggests that stability considerations along these lines may place strong constraints on the nature and even the existence of spacetime foam.Comment: 15 page

    Quantum Dynamics of Lorentzian Spacetime Foam

    Full text link
    A simple spacetime wormhole, which evolves classically from zero throat radius to a maximum value and recontracts, can be regarded as one possible mode of fluctuation in the microscopic ``spacetime foam'' first suggested by Wheeler. The dynamics of a particularly simple version of such a wormhole can be reduced to that of a single quantity, its throat radius; this wormhole thus provides a ``minisuperspace model'' for a structure in Lorentzian-signature foam. The classical equation of motion for the wormhole throat is obtained from the Einstein field equations and a suitable equation of state for the matter at the throat. Analysis of the quantum behavior of the hole then proceeds from an action corresponding to that equation of motion. The action obtained simply by calculating the scalar curvature of the hole spacetime yields a model with features like those of the relativistic free particle. In particular the Hamiltonian is nonlocal, and for the wormhole cannot even be given as a differential operator in closed form. Nonetheless the general solution of the Schr\"odinger equation for wormhole wave functions, i.e., the wave-function propagator, can be expressed as a path integral. Too complicated to perform exactly, this can yet be evaluated via a WKB approximation. The result indicates that the wormhole, classically stable, is quantum-mechanically unstable: A Feynman-Kac decomposition of the WKB propagator yields no spectrum of bound states. Though an initially localized wormhole wave function may oscillate for many classical expansion/recontraction periods, it must eventually leak to large radius values. The possibility of such a mode unstable against growth, combined withComment: 37 pages, 93-

    Hagedorn Inflation: Open Strings on Branes Can Drive Inflation

    Full text link
    We demonstrate an inflationary solution to the cosmological horizon problem during the Hagedorn regime in the early universe. Here the observable universe is confined to three spatial dimensions (a three-brane) embedded in higher dimensions. The only ingredients required are open strings on D-branes at temperatures close to the string scale. No potential is required. Winding modes of the strings provide a negative pressure that can drive inflation of our observable universe. Hence the mere existence of open strings on branes in the early hot phase of the universe drives Hagedorn inflation, which can be either power law or exponential. We note the amusing fact that, in the case of stationary extra dimensions, inflationary expansion takes place only for branes of three or less dimensions.Comment: Talk given by Katherine Frees

    de Sitter invariance of the dS graviton vacuum

    Full text link
    The two-point function of linearized gravitons on de Sitter space is infrared divergent in the standard transverse traceless synchronous gauge defined by k=0k=0 cosmological coordinates (also called conformal or Poincare coordinates). We show that this divergence can be removed by adding a linearized diffeomorphism to each mode function; i.e., by an explicit change of gauge. It follows that the graviton vacuum state is well-defined and de Sitter invariant in agreement with various earlier arguments.Comment: 14 pages, 1 figur
    corecore