2,263 research outputs found

    The screwworm eradication data system archives

    Get PDF
    The archives accumulated during 1 year of operation of the Satellite Temperature-Monitoring System during development of the Screwworm Eradication Data System are reported. Brief descriptions of all the kinds of tapes, as well as their potential uses, are presented. Reference is made to other documents that explain the generation of these data

    Quantization in black hole backgrounds

    Get PDF
    Quantum field theory in a semiclassical background can be derived as an approximation to quantum gravity from a weak-coupling expansion in the inverse Planck mass. Such an expansion is studied for evolution on "nice-slices" in the spacetime describing a black hole of mass M. Arguments for a breakdown of this expansion are presented, due to significant gravitational coupling between fluctuations, which is consistent with the statement that existing calculations of information loss in black holes are not reliable. For a given fluctuation, the coupling to subsequent fluctuations becomes of order unity by a time of order M^3. Lack of a systematic derivation of the weakly-coupled/semiclassical approximation would indicate a role for the non-perturbative dynamics of gravity, and possibly for the proposal that such dynamics has an essentially non-local quality.Comment: 28 pages, 4 figures, harvmac. v2: added refs, minor clarification

    High energy QCD scattering, the shape of gravity on an IR brane, and the Froissart bound

    Get PDF
    High-energy scattering in non-conformal gauge theories is investigated using the AdS/CFT dual string/gravity theory. It is argued that strong-gravity processes, such as black hole formation, play an important role in the dual dynamics. Further information about this dynamics is found by performing a linearized analysis of gravity for a mass near an infrared brane; this gives the far field approximation to black hole or other strong-gravity effects, and in particular allows us to estimate their shape. From this shape, one can infer a total scattering cross-section that grows with center of mass energy as ln^2 E, saturating the Froissart bound.Comment: 27 pages, 1 fig, harvmac. v2: references added, typos corrected v3: typo correcte

    The information paradox and the locality bound

    Full text link
    Hawking's argument for information loss in black hole evaporation rests on the assumption of independent Hilbert spaces for the interior and exterior of a black hole. We argue that such independence cannot be established without incorporating strong gravitational effects that undermine locality and invalidate the use of quantum field theory in a semiclassical background geometry. These considerations should also play a role in a deeper understanding of horizon complementarity.Comment: 21 pages, harvmac; v2-3. minor corrections, references adde

    Information Loss and Anomalous Scattering

    Full text link
    The approach of 't Hooft to the puzzles of black hole evaporation can be applied to a simpler system with analogous features. The system is 1+11+1 dimensional electrodynamics in a linear dilaton background. Analogues of black holes, Hawking radiation and evaporation exist in this system. In perturbation theory there appears to be an information paradox but this gets resolved in the full quantum theory and there exists an exact SS-matrix, which is fully unitary and information conserving. 't Hooft's method gives the leading terms in a systematic approximation to the exact result.Comment: 18 pages, 3 figures (postscript files available soon on request), (earlier version got corrupted by mail system

    Dynamics of Extremal Black Holes

    Full text link
    Particle scattering and radiation by a magnetically charged, dilatonic black hole is investigated near the extremal limit at which the mass is a constant times the charge. Near this limit a neighborhood of the horizon of the black hole is closely approximated by a trivial product of a two-dimensional black hole with a sphere. This is shown to imply that the scattering of long-wavelength particles can be described by a (previously analyzed) two-dimensional effective field theory, and is related to the formation/evaporation of two-dimensional black holes. The scattering proceeds via particle capture followed by Hawking re-emission, and naively appears to violate unitarity. However this conclusion can be altered when the effects of backreaction are included. Particle-hole scattering is discussed in the light of a recent analysis of the two-dimensional backreaction problem. It is argued that the quantum mechanical possibility of scattering off of extremal black holes implies the potential existence of additional quantum numbers - referred to as ``quantum whiskers'' - characterizing the black hole.Comment: 31 page

    Spacetime Embedding Diagrams for Black Holes

    Get PDF
    We show that the 1+1 dimensional reduction (i.e., the radial plane) of the Kruskal black hole can be embedded in 2+1 Minkowski spacetime and discuss how features of this spacetime can be seen from the embedding diagram. The purpose of this work is educational: The associated embedding diagrams may be useful for explaining aspects of black holes to students who are familiar with special relativity, but not general relativity.Comment: 22 pages, 21 figures, RevTex. To be submitted to the American Journal of Physics. Experts will wish only to skim appendix A and to look at the pictures. Suggested Maple code is now compatible with MapleV4r

    Scales and hierarchies in warped compactifications and brane worlds

    Full text link
    Warped compactifications with branes provide a new approach to the hierarchy problem and generate a diversity of four-dimensional thresholds. We investigate the relationships between these scales, which fall into two classes. Geometrical scales, such as thresholds for Kaluza-Klein, excited string, and black hole production, are generically determined soley by the spacetime geometry. Dynamical scales, notably the scale of supersymmetry breaking and moduli masses, depend on other details of the model. We illustrate these relationships in a class of solutions of type IIB string theory with imaginary self-dual fluxes. After identifying the geometrical scales and the resulting hierarchy, we determine the gravitino and moduli masses through explicit dimensional reduction, and estimate their value to be near the four-dimensional Planck scale. In the process we obtain expressions for the superpotential and Kahler potential, including the effects of warping. We identify matter living on certain branes to be effectively sequestered from the supersymmetry breaking fluxes: specifically, such "visible sector" fields receive no tree-level masses from the supersymmetry breaking. However, loop corrections are expected to generate masses, at the phenomenologically viable TeV scale.Comment: 33 pages, LaTeX. v2: reference added v3: reference added, typos correcte

    Exact Four-Dimensional Dyonic Black Holes and Bertotti-Robinson Spacetimes in String Theory

    Full text link
    Conformal field theories corresponding to two-dimensional electrically charged black holes and to two-dimensional anti-de Sitter space with a covariantly constant electric field are simply constructed as SL(2,R)/ZSL(2,R)/Z WZW coset models. The two-dimensional electrically charged black holes are related by Kaluza-Klein reduction to the 2+1-dimensional rotating black hole of Banados, Teitelboim and Zanelli, and our construction is correspondingly related to its realization as a WZW model. Four-dimensional spacetime solutions are obtained by tensoring these two-dimensional theories with SU(2)/Z(m)SU(2)/Z(m) coset models. These describe a family of dyonic black holes and the Bertotti--Robinson universe.Comment: 10 pages, harvmac, (Reference to Kaloper added.
    • …
    corecore