4,442 research outputs found

    Ecological IVIS design : using EID to develop a novel in-vehicle information system

    Get PDF
    New in-vehicle information systems (IVIS) are emerging which purport to encourage more environment friendly or ‘green’ driving. Meanwhile, wider concerns about road safety and in-car distractions remain. The ‘Foot-LITE’ project is an effort to balance these issues, aimed at achieving safer and greener driving through real-time driving information, presented via an in-vehicle interface which facilitates the desired behaviours while avoiding negative consequences. One way of achieving this is to use ecological interface design (EID) techniques. This article presents part of the formative human-centred design process for developing the in-car display through a series of rapid prototyping studies comparing EID against conventional interface design principles. We focus primarily on the visual display, although some development of an ecological auditory display is also presented. The results of feedback from potential users as well as subject matter experts are discussed with respect to implications for future interface design in this field

    Life v2.0 - Quo vadis Homo sapiens?

    Get PDF

    Modular Design via Multiple Anion Chemistry of the High Mobility van der Waals Semiconductor Bi₄O₄SeCl₂

    Get PDF
    Making new van der Waals materials with electronic or magnetic functionality is a chemical design challenge for the development of two-dimensional nanoelectronic and energy conversion devices. We present the synthesis and properties of the van der Waals material Bi4O4SeCl2, which is a 1:1 superlattice of the structural units present in the van der Waals insulator BiOCl and the three-dimensionally connected semiconductor Bi2O2Se. The presence of three anions gives the new structure both the bridging selenide anion sites that connect pairs of Bi2O2 layers in Bi2O2Se and the terminal chloride sites that produce the van der Waals gap in BiOCl. This retains the electronic properties of Bi2O2Se while reducing the dimensionality of the bonding network connecting the Bi2O2Se units to allow exfoliation of Bi4O4SeCl2 to 1.4 nm height. The superlattice structure is stabilized by the configurational entropy of anion disorder across the terminal and bridging sites. The reduction in connective dimensionality with retention of electronic functionality stems from the expanded anion compositional diversity

    A role for core planar polarity proteins in cell contact-mediated orientation of planar cell division across the mammalian embryonic skin

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2017. Supplementary information accompanies this paper at doi:10.1038/s41598-017-01971-2.The question of how cell division orientation is determined is fundamentally important for understanding tissue and organ shape in both healthy or disease conditions. Here we provide evidence for cell contact-dependent orientation of planar cell division in the mammalian embryonic skin. We propose a model where the core planar polarity proteins Celsr1 and Frizzled-6 (Fz6) communicate the long axis orientation of interphase basal cells to neighbouring basal mitoses so that they align their horizontal division plane along the same axis. The underlying mechanism requires a direct, cell surface, planar polarised cue, which we posit depends upon variant post-translational forms of Celsr1 protein coupled to Fz6. Our hypothesis has parallels with contact-mediated division orientation in early C. elegans embryos suggesting functional conservation between the adhesion-GPCRs Celsr1 and Latrophilin-1. We propose that linking planar cell division plane with interphase neighbour long axis geometry reinforces axial bias in skin spreading around the mouse embryo body.Peer reviewe

    Aerobic capacity, activity levels and daily energy expenditure in male and female adolescents of the kenyan nandi sub-group

    Get PDF
    The relative importance of genetic and socio-cultural influences contributing to the success of east Africans in endurance athletics remains unknown in part because the pre-training phenotype of this population remains incompletely assessed. Here cardiopulmonary fitness, physical activity levels, distance travelled to school and daily energy expenditure in 15 habitually active male (13.9±1.6 years) and 15 habitually active female (13.9±1.2) adolescents from a rural Nandi primary school are assessed. Aerobic capacity ([Formula: see text]) was evaluated during two maximal discontinuous incremental exercise tests; physical activity using accelerometry combined with a global positioning system; and energy expenditure using the doubly labelled water method. The [Formula: see text] of the male and female adolescents were 73.9±5.7 ml(.) kg(-1.) min(-1) and 61.5±6.3 ml(.) kg(-1.) min(-1), respectively. Total time spent in sedentary, light, moderate and vigorous physical activities per day was 406±63 min (50% of total monitored time), 244±56 min (30%), 75±18 min (9%) and 82±30 min (10%). Average total daily distance travelled to and from school was 7.5±3.0 km (0.8-13.4 km). Mean daily energy expenditure, activity-induced energy expenditure and physical activity level was 12.2±3.4 MJ(.) day(-1), 5.4±3.0 MJ(.) day(-1) and 2.2±0.6. 70.6% of the variation in [Formula: see text] was explained by sex (partial R(2) = 54.7%) and body mass index (partial R(2) = 15.9%). Energy expenditure and physical activity variables did not predict variation in [Formula: see text] once sex had been accounted for. The highly active and energy-demanding lifestyle of rural Kenyan adolescents may account for their exceptional aerobic fitness and collectively prime them for later training and athletic success

    Stable Panoramic Views Facilitate Snap-Shot Like Memories for Spatial Reorientation in Homing Pigeons

    Get PDF
    Following spatial disorientation, animals can reorient themselves by relying on geometric cues (metric and sense) specified both by the macroscopic surface layout of an enclosed space and prominent visual landmarks in arrays. Whether spatial reorientation in arrays of landmarks is based on explicit representation of the geometric cues is a matter of debate. Here we trained homing pigeons (Columba livia) to locate a food-reward in a rectangular array of four identical or differently coloured pipes provided with four openings, only one of which allowed the birds to have access to the reward. Pigeons were trained either with a stable or a variable position of the opening on pipes, so that they could view the array either from the same or a variable perspective. Explicit mapping of configural geometry would predict successful reorientation irrespective of access condition. In contrast, we found that a stable view of the array facilitated spatial learning in homing pigeons, likely through the formation of snapshot-like memories

    Conservation of pattern as a tool for inference on spatial snapshots in ecological data

    Get PDF
    As climate change and other anthropogenic factors increase the uncertainty of vegetation ecosystem persistence, the ability to rapidly assess their dynamics is paramount. Vegetation and sessile communities form a variety of striking regular spatial patterns such as stripes, spots and labyrinths, that have been used as indicators of ecosystem current state, through qualitative analysis of simple models. Here we describe a new method for rigorous quantitative estimation of biological parameters from a single spatial snapshot. We formulate a synthetic likelihood through consideration of the expected change in the correlation structure of the spatial pattern. This then allows Bayesian inference to be performed on the model parameters, which includes providing parameter uncertainty. The method was validated against simulated data and then applied to real data in the form of aerial photographs of seagrass banding. The inferred parameters were found to be able to reproduce similar patterns to those observed and able to detect strength of spatial competition, competition-induced mortality and the local range of reproduction. This technique points to a way of performing rapid inference of spatial competition and ecological stability from a single spatial snapshots of sessile communities

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure
    corecore