581 research outputs found

    Application of PCR to a clinical and environmental investigation of a case of equine botulism

    Get PDF
    PCR for the detection of botulinum neurotoxin gene types A to E was used in the investigation of a case of equine botulism. Samples from a foal diagnosed with toxicoinfectious botulism in 1985 were reanalyzed by PCR and the mouse bioassay in conjunction with an environmental survey. Neurotoxin B was detected by mouse bioassay in culture enrichments of serum, spleen, feces, and intestinal contents. PCR results compared well with mouse bioassay results, detecting type B neurotoxin genes in these samples and also in a liver sample. Other neurotoxin types were not detected by either test. Clostridium botulinum type B was shown to be prevalent in soils collected from the area in which the foal was raised. Four methods were used to test for the presence of botulinum neurotoxin-producing organisms in 66 soil samples taken within a 5-km radius: PCR and agarose gel electrophoresis (types A to E), PCR and an enzyme-linked assay (type B), hybridization of crude alkaline cell lysates with a type B-specific probe, and the mouse bioassay (all types). Fewer soil samples were positive for C. botulinum type B by the mouse bioassay (15%) than by any of the DNA-based detection systems. Hybridization of a type B-specific probe to DNA dot blots (26% of the samples were positive) and PCR-enzyme-linked assay (77% of the samples were positive) were used for the rapid analysis of large numbers of samples, with sensitivity limits of 3 x 10(6) and 3,000 cells, respectively. Conventional detection of PCR products by gel electrophoresis was the most sensitive method (300-cell limit), and in the present environmental survey, neurotoxin B genes only were detected in 94% of the samples

    RAFT dispersion polymerization of N,N-dimethylacrylamide in a series of n-alkanes using a thermoresponsive poly(tert-octyl acrylamide) steric stabilizer

    Get PDF
    Herein we report the reversible addition–fragmentation chain transfer (RAFT) solution polymerization of tert-octyl acrylamide (OAA) in 1,4-dioxane using a trithiocarbonate-based RAFT agent. POAA homopolymers were synthesized with good control (Mw/Mn < 1.22) within 1 h at 70 °C when targeting mean degrees of polymerization (DP) of up to 100. Differential scanning calorimetry studies conducted on a series of five POAA homopolymers indicated a weak molecular weight dependence for the glass transition temperature (Tg), which varied from 67 to 83 °C for POAA DPs ranging from 22 to 99. High blocking efficiencies were observed when chain-extending such homopolymers with OAA, suggesting that most of the RAFT end-groups remain intact. Subsequently, we employed POAA as a steric stabilizer block for the PISA syntheses of spherical nanoparticles in n-heptane via RAFT dispersion polymerization of N,N-dimethylacrylamide (DMAC) at 70 °C. Targeting PDMAC DPs between 50 and 250 resulted in reasonably good control (Mw/Mn ≤ 1.42) and produced well-defined spherical diblock copolymer nanoparticles (z-average diameters ranging from 23 nm to 91 nm, with DLS polydispersities remaining below 0.10) within 5 h. A facile one-pot synthesis route to near-monodisperse 36 nm diameter POAA82-PDMAC100 nanoparticles was developed in n-heptane that provided similar control over the molecular weight distribution (Mw/Mn = 1.19). Unfortunately, POAA85-PDMACx diblock copolymer nanoparticles tended to deform and undergo film formation prior to transmission electron microscopy (TEM) studies. To overcome this problem, ethylene glycol diacrylate (EGDA) was introduced towards the end of the DMAC polymerization. The resulting core-crosslinked POAA85-PDMAC195-PEGDA20 triblock copolymer nano-objects exhibited a relatively well-defined spherical morphology. Interestingly, the colloidal stability of POAA85-PDMACx diblock copolymer dispersions depends on the type of n-alkane. Spherical nanoparticles produced in n-heptane or n-octane remained colloidally stable on cooling to 20 °C. However, the colloidally stable POAA-PDMAC nanoparticles prepared at 70 °C in higher n-alkanes became flocculated on cooling. This is because the POAA steric stabilizer chains exhibit upper critical solution temperature (UCST)-type behavior in such solvents. Nanoparticle aggregation was characterized by variable temperature turbidimetry and dynamic light scattering experiments

    Synthesis of well-defined diblock copolymer nano-objects by RAFT non-aqueous emulsion polymerization of N-(2-acryloyloxy)ethyl pyrrolidone in non-polar media

    Get PDF
    Polymerization-induced self-assembly (PISA) is widely recognized to be a powerful technique for the preparation of diblock copolymer nano-objects in various solvents. Herein a highly unusual non-aqueous emulsion polymerization formulation is reported. More specifically, the reversible addition–fragmentation chain transfer (RAFT) polymerization of N-(2-acryloyloxy)ethyl pyrrolidone (NAEP) is conducted in n-dodecane using a poly(stearyl methacrylate) (PSMA) precursor to produce sterically-stabilized spherical nanoparticles at 90 °C. This relatively high polymerization temperature was required to ensure sufficient background solubility for the highly polar NAEP monomer, which is immiscible with the non-polar continuous phase. A relatively long PSMA precursor (mean degree of polymerization, DP = 36) was required to ensure colloidal stability, which meant that only kinetically-trapped spheres could be obtained. Dynamic light scattering (DLS) studies indicated that the resulting PSMA36–PNAEPx (x = 60 to 500) spheres were relatively well-defined (DLS polydispersity <0.10) and the z-average diameter increased linearly with PNAEP DP up to 261 nm. Differential scanning calorimetry studies confirmed a relatively low glass transition temperature (Tg) for the core-forming PNAEP block, which hindered accurate sizing of the nanoparticles by TEM. However, introducing ethylene glycol diacrylate (EGDA) as a third block to covalently crosslink the nanoparticle cores enabled a spherical morphology to be identified by transmission electron microscopy studies. This assignment was confirmed by small angle X-ray scattering studies of the linear diblock copolymer nanoparticles. Finally, hydrophobic linear PSMA36–PNAEP70 spheres were evaluated as a putative Pickering emulsifier for n-dodecane–water mixtures. Unexpectedly, addition of an equal volume of water followed by high-shear homogenization always produced oil-in-water (o/w) emulsions, rather than water-in-oil (w/o) emulsions. Moreover, core-crosslinked PSMA36–PNAEP60–PEGDA10 spheres also produced o/w Pickering emulsions, suggesting that such Pickering emulsions must be formed by nanoparticle adsorption at the inner surface of the oil droplets. DLS studies of the continuous phase obtained after either creaming (o/w emulsion) or sedimentation (w/o emulsion) of the droplet phase were consistent with this interpretation. Furthermore, certain experimental conditions (e.g. ≥0.5% w/w copolymer concentration for linear PSMA36–PNAEPx nanoparticles, ≥0.1% w/w for core-crosslinked nanoparticles, or n-dodecane volume fractions ≤0.60) produced w/o/w double emulsions in a single step, as confirmed by fluorescence microscopy studies

    RAFT dispersion polymerisation of lauryl methacrylate in ethanol–water binary mixtures: synthesis of diblock copolymer vesicles with deformable membranes

    Get PDF
    Polymerisation-induced self-assembly (PISA) is widely recognised to be a powerful platform technology for the rational synthesis of diblock copolymer nano-objects. RAFT alcoholic dispersion polymerisation is an important PISA formulation that has been used to prepare block copolymer spheres, worms and vesicles. In this study, we have utilised the RAFT dispersion polymerisation of lauryl methacrylate (LMA) using a poly(N-(2-methacryloyloxy)ethyl pyrrolidone) (PNMEP) stabiliser in order to prepare vesicles with highly deformable membranes. More specifically, a PNMEP28 precursor was chain-extended with LMA in an 80 : 20 w/w ethanol–water mixture to produce a series of PNMEP28-PLMAx diblock copolymer nano-objects (Mw/Mn ≤ 1.40; LMA conversions ≥98% in all cases, as indicated by 1H NMR spectroscopy). Differential scanning calorimetry studies confirmed that the membrane-forming PLMA block had a relatively low glass transition temperature. Transmission electron microscopy and small angle X-ray scattering were used to identify copolymer morphologies for these highly asymmetric diblock copolymers. A mixed sphere and vesicle morphology was observed when targeting x = 43, while polydisperse vesicles were obtained for x = 65–151. Slightly smaller vesicles with lower mean aggregation numbers and thicker membranes were obtained when targeting higher PLMA DPs. A minor population of sheet-like lamellae was observed for each target copolymer composition, with lamellar stacking leading to a structure peak in the scattering patterns recorded for PNMEP28-PLMA129 and PNMEP28-PLMA151. Bearing in mind potential industrial applications, RAFT chain-end removal strategies were briefly explored for such PNMEP28-PLMAx vesicles. Thus, 96% of dithiobenzoate chain-ends could be removed within 3 h at 50 °C via LED irradiation of a 7.5% aqueous dispersion of PNMEP28-PLMA87 vesicles at a wavelength of 405 nm. This appears to be an attractive method for RAFT chain-end removal from diblock copolymer nano-objects, particularly those comprising highly hydrophobic cores

    RAFT aqueous emulsion polymerization of methyl methacrylate : observation of unexpected constraints when employing a non-ionic steric stabilizer block

    Get PDF
    The RAFT aqueous emulsion polymerization of methyl methacrylate (MMA) is conducted at 70 °C using poly(glycerol monomethacrylate) (PGMA) as a steric stabilizer block. This non-ionic precursor has previously proved to be highly effective for the RAFT aqueous emulsion polymerization of various vinyl monomers such as benzyl methacrylate (BzMA), 2,2,2-trifluoroethyl methacrylate (TFEMA), isopropylideneglycerol monomethacrylate (IPGMA) or glycidyl methacrylate. However, an unexpected constraint was encountered in the case of MMA. Targeting a degree of polymerization (DP) of 20 to 100 for the PMMA block led to colloidal dispersions of kinetically-trapped spherical nanoparticles ranging in size from 17 nm to 31 nm. On the other hand, targeting DPs above 100 invariably led to the formation of highly flocculated spherical nanoparticles. This rather limited DP range is in striking contrast to the much higher DPs that can be targeted without loss of colloidal stability when using more hydrophobic monomers such as BzMA, TFEMA or IPGMA. The same flocculation problem was also evident when employing a PGMA precursor containing an anionic carboxylate end-group, but a series of colloidally stable dispersions could be obtained when using an anionic poly(methacrylic acid) stabilizer. Finally, the efficient removal of RAFT end-groups from PGMA50-PMMA80 nanoparticles was achieved by visible light irradiation using a blue LED source (λ = 405 nm). UV GPC studies confirmed that up to 87% dithiobenzoate end-groups can be removed from such nanoparticles within 12 h at 80 °C. On the other hand, using excess H2O2 under the same conditions only led to 24% end-group removal. This is because this water-soluble reagent has restricted access to the hydrophobic PMMA cores

    Correlation-Polarization Effects in Electron/Positron Scattering from Acetylene: A Comparison of Computational Models

    Full text link
    Different computational methods are employed to evaluate elastic (rotationally summed) integral and differential cross sections for low energy (below about 10 eV) positron scattering off gas-phase C2_2H2_2 molecules. The computations are carried out at the static and static-plus-polarization levels for describing the interaction forces and the correlation-polarization contributions are found to be an essential component for the correct description of low-energy cross section behavior. The local model potentials derived from density functional theory (DFT) and from the distributed positron model (DPM) are found to produce very high-quality agreement with existing measurements. On the other hand, the less satisfactory agreement between the R-matrix (RM) results and measured data shows the effects of the slow convergence rate of configuration-interaction (CI) expansion methods with respect to the size of the CI-expansion. To contrast the positron scattering findings, results for electron-C2_2H2_2 integral and differential cross sections, calculated with both a DFT model potential and the R-matrix method, are compared and analysed around the shape resonance energy region and found to produce better internal agreement

    Coronal Diagnostics from Narrowband Images around 30.4 nm

    Full text link
    Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He II Ly alpha line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona the contribution from the nearby Si XI 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si XI line dominates the He II line from just above the limb up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic

    Effect of age, sex and gender on pain sensitivity: A narrative review

    Get PDF
    © 2017 Eltumi And Tashani. Introduction: An increasing body of literature on sex and gender differences in pain sensitivity has been accumulated in recent years. There is also evidence from epidemiological research that painful conditions are more prevalent in older people. The aim of this narrative review is to critically appraise the relevant literature investigating the presence of age and sex differences in clinical and experimental pain conditions. Methods: A scoping search of the literature identifying relevant peer reviewed articles was conducted on May 2016. Information and evidence from the key articles were narratively described and data was quantitatively synthesised to identify gaps of knowledge in the research literature concerning age and sex differences in pain responses. Results: This critical appraisal of the literature suggests that the results of the experimental and clinical studies regarding age and sex differences in pain contain some contradictions as far as age differences in pain are concerned. While data from the clinical studies are more consistent and seem to point towards the fact that chronic pain prevalence increases in the elderly findings from the experimental studies on the other hand were inconsistent, with pain threshold increasing with age in some studies and decreasing with age in others. Conclusion: There is a need for further research using the latest advanced quantitative sensory testing protocols to measure the function of small nerve fibres that are involved in nociception and pain sensitivity across the human life span. Implications: Findings from these studies should feed into and inform evidence emerging from other types of studies (e.g. brain imaging technique and psychometrics) suggesting that pain in the older humans may have unique characteristics that affect how old patients respond to intervention

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    • …
    corecore