5,157 research outputs found

    Lower and upper bounds for nef cones

    Full text link
    The nef cone of a projective variety Y is an important and often elusive invariant. In this paper we construct two polyhedral lower bounds and one polyhedral upper bound for the nef cone of Y using an embedding of Y into a toric variety. The lower bounds generalize the combinatorial description of the nef cone of a Mori dream space, while the upper bound generalizes the F-conjecture for the nef cone of the moduli space \bar{M}_{0,n} to a wide class of varieties.Comment: 25 pages, 4 figures. Final version to appear in IMR

    Transnational Human Rights Obligations.

    Get PDF

    On the Hardness and Inapproximability of Recognizing Wheeler Graphs

    Get PDF
    In recent years several compressed indexes based on variants of the Burrows-Wheeler transformation have been introduced. Some of these are used to index structures far more complex than a single string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005]. As such, there has been an increasing effort to better understand under which conditions such an indexing scheme is possible. This has led to the introduction of Wheeler graphs [Gagie et al., Theor. Comput. Sci., 2017]. Gagie et al. showed that de Bruijn graphs, generalized compressed suffix arrays, and several other BWT related structures can be represented as Wheeler graphs, and that Wheeler graphs can be indexed in a way which is space efficient. Hence, being able to recognize whether a given graph is a Wheeler graph, or being able to approximate a given graph by a Wheeler graph, could have numerous applications in indexing. Here we resolve the open question of whether there exists an efficient algorithm for recognizing if a given graph is a Wheeler graph. We present: - The problem of recognizing whether a given graph G=(V,E) is a Wheeler graph is NP-complete for any edge label alphabet of size sigma >= 2, even when G is a DAG. This holds even on a restricted, subset of graphs called d-NFA\u27s for d >= 5. This is in contrast to recent results demonstrating the problem can be solved in polynomial time for d-NFA\u27s where d <= 2. We also show the recognition problem can be solved in linear time for sigma =1; - There exists an 2^{e log sigma + O(n + e)} time exact algorithm where n = |V| and e = |E|. This algorithm relies on graph isomorphism being computable in strictly sub-exponential time; - We define an optimization variant of the problem called Wheeler Graph Violation, abbreviated WGV, where the aim is to remove the minimum number of edges in order to obtain a Wheeler graph. We show WGV is APX-hard, even when G is a DAG, implying there exists a constant C >= 1 for which there is no C-approximation algorithm (unless P = NP). Also, conditioned on the Unique Games Conjecture, for all C >= 1, it is NP-hard to find a C-approximation; - We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to find the largest subgraph which is a Wheeler Graph (the dual of the WGV). In contrast to WGV, we prove that the WS problem is in APX for sigma=O(1); The above findings suggest that most problems under this theme are computationally difficult. However, we identify a class of graphs for which the recognition problem is polynomial time solvable, raising the open question of which parameters determine this problem\u27s difficulty

    Pointed Trees Of Projective Spaces

    Get PDF
    We introduce a smooth projective variety T(d,n) which compactifies the space of configurations of it distinct points oil affine d-space modulo translation and homothety. The points in the boundary correspond to n-pointed stable rooted trees of d-dimensional projective spaces, which for d = 1, are (n + 1)-pointed stable rational curves. In particular, T(1,n) is isomorphic to ($) over bar (0,n+1), the moduli space of such curves. The variety T(d,n) shares many properties with (M) over bar (0,n+1). For example, as we prove, the boundary is a smooth normal crossings divisor whose components are products of T(d,i) for i \u3c n and it has an inductive construction analogous to but differing from Keel\u27s for (0,n+1). This call be used to describe its Chow groups and Chow motive generalizing [Trans. Airier. Math. Soc. 330 (1992), 545-574]. It also allows us to compute its Poincare polynomials, giving all alternative to the description implicit in [Progr. Math., vol. 129, Birkhauser, 1995, pp. 401-417]. We give a presentation of the Chow rings of T(d,n), exhibit explicit dual bases for the dimension I and codimension 1 cycles. The variety T(d,n) is embedded in the Fulton-MacPherson spaces X[n] for any smooth variety X, and we use this connection in a number of ways. In particular we give a family of ample divisors on T(d,n) and an inductive presentation of the Chow motive of X[n]. This also gives an inductive presentation of the Chow groups of X[n] analogous to Keel\u27s presentation for (M) over bar (0,n+1), solving a problem posed by Fulton and MacPherson
    • …
    corecore