828 research outputs found

    Cosmic shear covariance matrix in wCDM: Cosmology matters

    Get PDF
    We present here the cosmo-SLICS, a new suite of simulations specially designed for the analysis of current and upcoming weak lensing data beyond the standard two-point cosmic shear. We sampled the [Ωm, σ8, h, w0] parameter space at 25 points organised in a Latin hyper-cube, spanning a range that contains most of the 2σ posterior distribution from ongoing lensing surveys. At each of these nodes we evolved a pair of N-body simulations in which the sampling variance is highly suppressed, and ray-traced the volumes 800 times to further increase the effective sky coverage. We extracted a lensing covariance matrix from these pseudo-independent light-cones and show that it closely matches a brute-force construction based on an ensemble of 800 truly independent N-body runs. More precisely, a Fisher analysis reveals that both methods yield marginalized two-dimensional constraints that vary by less than 6% in area, a result that holds under different survey specifications and that matches to within 15% the area obtained from an analytical covariance calculation. Extending this comparison with our 25 wCDM models, we probed the cosmology dependence of the lensing covariance directly from numerical simulations, reproducing remarkably well the Fisher results from the analytical models at most cosmologies. We demonstrate that varying the cosmology at which the covariance matrix is evaluated in the first place might have an order of magnitude greater impact on the parameter constraints than varying the choice of covariance estimation technique. We present a test case in which we generate fast predictions for both the lensing signal and its associated variance with a flexible Gaussian process regression emulator, achieving an accuracy of a few percent on the former and 10% on the latter

    Level sets of functions and symmetry sets of smooth surface sections

    Full text link
    We prove that the level sets of a real C^s function of two variables near a non-degenerate critical point are of class C^[s/2] and apply this to the study of planar sections of surfaces close to the singular section by the tangent plane at hyperbolic points or elliptic points, and in particular at umbilic points. We also analyse the cases coming from degenerate critical points, corresponding to elliptic cusps of Gauss on a surface, where the differentiability is now reduced to C^[s/4]. However in all our applications to symmetry sets of families of plane curves, we assume the C^infty smoothness.Comment: 15 pages, Latex, 6 grouped figures. The final version will appear in Mathematics of Surfaces. Lecture Notes in Computer Science (2005

    Offspring subcutaneous adipose markers are sensitive to the timing of maternal gestational weight gain

    Get PDF
    peer-reviewedBackground Excessive maternal weight gain during pregnancy impacts on offspring health. This study focused on the timing of maternal gestational weight gain, using a porcine model with mothers of normal pre-pregnancy weight. Methods Trial design ensured the trajectory of maternal gestational weight gain differed across treatments in early, mid and late gestation. Diet composition did not differ. On day 25 gestation, sows were assigned to one of five treatments: Control sows received a standard gestation diet of 2.3 kg/day (30 MJ DE/day) from early to late gestation (day 25–110 gestation). E sows received 4.6 kg food/day in early gestation (day 25–50 gestation). M sows doubled their food intake in mid gestation (day 50–80 gestation). EM sows doubled their food intake during both early and mid gestation (day 25–80 gestation). L sows consumed 3.5 kg food/day in late gestation (day 80–110 gestation). Offspring body weight and food intake levels were measured from birth to adolescence. Markers of lipid metabolism, hypertrophy and inflammation were investigated in subcutaneous adipose tissue of adolescent offspring. Results The trajectory of gestational weight gain differed across treatments. However total gestational weight gain did not differ except for EM sows who were the heaviest and fattest mothers at parturition. Offspring birth weight did not differ across treatments. Subcutaneous adipose tissue from EM offspring differed significantly from controls, with elevated mRNA levels of lipogenic (CD36, ACACB and LPL), nutrient transporters (FABP4 and GLUT4), lipolysis (HSL and ATGL), adipocyte size (MEST) and inflammation (PAI-1) indicators. The subcutaneous adipose depot from L offspring exhibited elevated levels of CD36, ACACB, LPL, GLUT4 and FABP4 mRNA transcripts compared to control offspring. Conclusions Increasing gestational weight gain in early gestation had the greatest impact on offspring postnatal growth rate. Increasing maternal food allowance in late gestation appeared to shift the offspring adipocyte focus towards accumulation of fat. Mothers who gained the most weight during gestation (EM mothers) gave birth to offspring whose subcutaneous adipose tissue, at adolescence, appeared hyperactive compared to controls. This study concluded that mothers, who gained more than the recommended weight gain in mid and late gestation, put their offspring adipose tissue at risk of dysfunction.This research was funded by Teagasc, under the National Development Plan. LBMcN was in receipt of a Teagasc Walsh Fellowship. Nestle hosted LG on a sabbatical and funded the RT-PCR cost

    GUT-Scale Primordial Black Holes: Consequences and Constraints

    Full text link
    A population of very light primordial black holes which evaporate before nucleosynthesis begins is unconstrained unless the decaying black holes leave stable relics. We show that gravitons Hawking radiated from these black holes would source a substantial stochastic background of high frequency gravititational waves (101210^{12} Hz or more) in the present universe. These black holes may lead to a transient period of matter dominated expansion. In this case the primordial universe could be temporarily dominated by large clusters of "Hawking stars" and the resulting gravitational wave spectrum is independent of the initial number density of primordial black holes.Comment: 4 pages; grey body factors included in graviton emission calculations, and a couple of references added, but the conclusions are unchanged. v3 Minor changes to references and wording; final versio

    Perceiving movement patterns: Implications for skill evaluation, correction and development

    Get PDF
    Skill practitioners such as coaches, judges, and rehabilitation specialists rely heavily on the visual observation of movement to analyse performance, concomitantly performers of movement rely heavily on kinaesthetic sensitivity to produce movements of desired precision. The observation of movement errors (by coaches or therapists) and the correction of movement errors (by performers or patients) depend on fundamentally different perceptual systems that may differ in their sensitivity, units of control and trainability. This paper first examines the skill of perceiving fundamental movement characteristics and patterns (i.e., movement kinematics) by reviewing sport expertise literature that has investigated the capabilities of both expert performers and expert observers. Important expertise related differences in visual perceptual skill are discussed with a focus on perceptual and motor contributions to perceptual skill. Theories related to the perception of others movement patterns such as common coding are reviewed with a focus on implications for skill practitioners. Limitations in the current visual observation literature are considered, in particular the need to more directly examine the perceptual capabilities of skill practitioners to reliably differentiate changes in kinematics. The critical parallel issue of the kinaesthetic sensitivity of the patient or athlete is also reviewed, highlighting the need to know the magnitude of the differences between visual and kinaesthetic sensitivities for changes in movement kinematics in order to understand some of the challenges involved in matching detection of movement pattern errors to correction of these errors. Future research directions are discussed; particularly key methodological issues which may help directly establish perceptual sensitivity
    • …
    corecore