103 research outputs found

    A volume inequality for quantum Fisher information and the uncertainty principle

    Full text link
    Let A1,...,ANA_1,...,A_N be complex self-adjoint matrices and let ρ\rho be a density matrix. The Robertson uncertainty principle det(Covρ(Ah,Aj))det(i2Tr(ρ[Ah,Aj])) det(Cov_\rho(A_h,A_j)) \geq det(- \frac{i}{2} Tr(\rho [A_h,A_j])) gives a bound for the quantum generalized covariance in terms of the commutators [Ah,Aj][A_h,A_j]. The right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case N=2m+1N=2m+1. Let ff be an arbitrary normalized symmetric operator monotone function and let ρ,f_{\rho,f} be the associated quantum Fisher information. In this paper we conjecture the inequality det(Covρ(Ah,Aj))det(f(0)2ρ,f) det (Cov_\rho(A_h,A_j)) \geq det (\frac{f(0)}{2} _{\rho,f}) that gives a non-trivial bound for any natural number NN using the commutators i[ρ,Ah]i[\rho, A_h]. The inequality has been proved in the cases N=1,2N=1,2 by the joint efforts of many authors. In this paper we prove the case N=3 for real matrices

    On the monotonicity of scalar curvature in classical and quantum information geometry

    Full text link
    We study the statistical monotonicity of the scalar curvature for the alpha-geometries on the simplex of probability vectors. From the results obtained and from numerical data we are led to some conjectures about quantum alpha-geometries and Wigner-Yanase-Dyson information. Finally we show that this last conjecture implies the truth of the Petz conjecture about the monotonicity of the scalar curvature of the Bogoliubov-Kubo-Mori monotone metric.Comment: 20 pages, 2 .eps figures; (v2) section 2 rewritten, typos correcte

    On the characterisation of paired monotone metrics

    Get PDF
    Hasegawa and Petz introduced the notion of dual statistically monotone metrics. They also gave a characterisation theorem showing that Wigner-Yanase-Dyson metrics are the only members of the dual family. In this paper we show that the characterisation theorem holds true under more general hypotheses.Comment: 12 pages, to appear on Ann. Inst. Stat. Math.; v2: changes made to conform to accepted version, title changed as wel

    Volume of the quantum mechanical state space

    Full text link
    The volume of the quantum mechanical state space over nn-dimensional real, complex and quaternionic Hilbert-spaces with respect to the canonical Euclidean measure is computed, and explicit formulas are presented for the expected value of the determinant in the general setting too. The case when the state space is endowed with a monotone metric or a pull-back metric is considered too, we give formulas to compute the volume of the state space with respect to the given Riemannian metric. We present the volume of the space of qubits with respect to various monotone metrics. It turns out that the volume of the space of qubits can be infinite too. We characterize those monotone metrics which generates infinite volume.Comment: 17 page

    Metric adjusted skew information: Convexity and restricted forms of superadditivity

    Full text link
    We give a truly elementary proof of the convexity of metric adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric adjusted skew informations. Recently, Luo and Zhang introduced the notion of semi-quantum states on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to general metric adjusted skew informations. We finally show that a recently introduced extension to parameter values 1<p2 1<p\le 2 of the WYD-information is a special case of (unbounded) metric adjusted skew information.Comment: An error in the literature is pointed ou

    Evolution of a Primordial Black Hole Population

    Get PDF
    We reconsider in this work the effects of an energy absorption term in the evolution of primordial black holes (hereafter PBHs) in the several epochs of the Universe. A critical mass is introduced as a boundary between the accreting and evaporating regimes of the PBHs. We show that the growth of PBHs is negligible in the Radiation-dominated Era due to scarcity of energy density supply from the expanding background, in agreement with a previous analysis by Carr and Hawking, but that nevertheless the absorption term is large enough for black holes above the critical mass to preclude their evaporation until the universe has cooled sufficiently. The effects of PBH motion are also discussed: the Doppler effect may give rise to energy accretion in black-holes with large peculiar motions relative to background. We discuss how cosmological constraints are modified by the introduction of the critical mass since that PBHs above it do not disturb the CMBR. We show that there is a large range of admissible masses for PBHs above the critical mass but well below the cosmological horizon. Finally we outline a minimal kinetic formalism, solved in some limiting cases, to deal with more complicated cases of PBH populationsComment: RevTex file, 8 pp., 3 .ps figures available upon request from [email protected]

    Nonparametric Information Geometry

    Full text link
    The differential-geometric structure of the set of positive densities on a given measure space has raised the interest of many mathematicians after the discovery by C.R. Rao of the geometric meaning of the Fisher information. Most of the research is focused on parametric statistical models. In series of papers by author and coworkers a particular version of the nonparametric case has been discussed. It consists of a minimalistic structure modeled according the theory of exponential families: given a reference density other densities are represented by the centered log likelihood which is an element of an Orlicz space. This mappings give a system of charts of a Banach manifold. It has been observed that, while the construction is natural, the practical applicability is limited by the technical difficulty to deal with such a class of Banach spaces. It has been suggested recently to replace the exponential function with other functions with similar behavior but polynomial growth at infinity in order to obtain more tractable Banach spaces, e.g. Hilbert spaces. We give first a review of our theory with special emphasis on the specific issues of the infinite dimensional setting. In a second part we discuss two specific topics, differential equations and the metric connection. The position of this line of research with respect to other approaches is briefly discussed.Comment: Submitted for publication in the Proceedings od GSI2013 Aug 28-30 2013 Pari

    Information geometry and sufficient statistics

    Full text link
    Information geometry provides a geometric approach to families of statistical models. The key geometric structures are the Fisher quadratic form and the Amari-Chentsov tensor. In statistics, the notion of sufficient statistic expresses the criterion for passing from one model to another without loss of information. This leads to the question how the geometric structures behave under such sufficient statistics. While this is well studied in the finite sample size case, in the infinite case, we encounter technical problems concerning the appropriate topologies. Here, we introduce notions of parametrized measure models and tensor fields on them that exhibit the right behavior under statistical transformations. Within this framework, we can then handle the topological issues and show that the Fisher metric and the Amari-Chentsov tensor on statistical models in the class of symmetric 2-tensor fields and 3-tensor fields can be uniquely (up to a constant) characterized by their invariance under sufficient statistics, thereby achieving a full generalization of the original result of Chentsov to infinite sample sizes. More generally, we decompose Markov morphisms between statistical models in terms of statistics. In particular, a monotonicity result for the Fisher information naturally follows.Comment: 37 p, final version, minor corrections, improved presentatio

    A Class of Non-Parametric Statistical Manifolds modelled on Sobolev Space

    Get PDF
    We construct a family of non-parametric (infinite-dimensional) manifolds of finite measures on Rd. The manifolds are modelled on a variety of weighted Sobolev spaces, including Hilbert-Sobolev spaces and mixed-norm spaces. Each supports the Fisher-Rao metric as a weak Riemannian metric. Densities are expressed in terms of a deformed exponential function having linear growth. Unusually for the Sobolev context, and as a consequence of its linear growth, this "lifts" to a nonlinear superposition (Nemytskii) operator that acts continuously on a particular class of mixed-norm model spaces, and on the fixed norm space W²'¹ i.e. it maps each of these spaces continuously into itself. It also maps continuously between other fixed-norm spaces with a loss of Lebesgue exponent that increases with the number of derivatives. Some of the results make essential use of a log-Sobolev embedding theorem. Each manifold contains a smoothly embedded submanifold of probability measures. Applications to the stochastic partial differential equations of nonlinear filtering (and hence to the Fokker-Planck equation) are outlined
    corecore