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Abstract
We construct a family of non-parametric (infinite-dimensional) manifolds of finite
measures on R

d , each containing a smoothly embedded submanifold of probabil-
ity measures. The manifolds are modelled on a variety of weighted Sobolev spaces,
includingHilbert–Sobolev spaces andmixed-norm spaces, and support the Fisher–Rao
metric as a weak Riemannian metric. Densities are expressed in terms of a deformed
exponential function having linear growth. Unusually for the Sobolev context, and as a
consequence of its linear growth, this “lifts” to a nonlinear superposition (Nemytskii)
operator that acts continuously on a particular class of mixed-norm model spaces, and
on the fixed norm spaceW 2,1; i.e. it maps each of these spaces continuously into itself.
In contrast with non-parametric exponential manifolds, the density itself belongs to
the model space, and the range of the chart is the whole of this space. Some of the
results make essential use of a log-Sobolev embedding theorem, which also sharpens
existing results concerning the regularity of statistical divergences on the manifolds.
Applications to the stochastic partial differential equations of nonlinear filtering (and
hence to the Fokker–Planck equation) are outlined.

Keywords Banach manifold · Fisher–Rao metric · Fokker–Planck equation ·
Log-Sobolev Embedding · Non-parametric statistics · Sobolev space

Mathematics Subject Classification 46N30 · 60D05 · 60H15 · 62B10 · 93E11

1 Introduction

This paper constructs variants of the statistical manifolds of [25,27], for which the
sample spaceX isRd . Themodel spaces used incorporate spatial derivatives of density
functions, and thereby subsume both sample space and information topologies. Apart
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from applications, such as the Fokker–Planck equation, this construction sharpens
some of the results in [25,27] concerning the regularity of statistical divergences; this
is consequence of log-Sobolev embedding.

Beginning with Rao’s observation that the Fisher information can be interpreted
as a Riemannian metric [32], information geometry has exploited the formalism of
smooth manifold theory in problems of statistical estimation. The finite-dimensional
(parametric) theory is now mature, and is treated pedagogically in [1,2,6,12,22]. The
archetypal example is the finite-dimensional exponential model, which is based on a
finite set of real-valued random variables defined on an underlying probability space
(X,X , μ). Affine combinations of these are exponentiated to yield probability den-
sity functions with respect to the reference measure μ. This construction induces an
“information” topology on the resulting set of probability measures, that is compatible
with the statistical divergences of estimation theory, derivatives of which can be used
to define the Fisher–Rao metric and other geometric objects.

The first fully successful extension of these ideas to the non-parametric setting
appeared in [31], and was further developed in [10,16,30]. These papers follow the
formalism of the exponential model by using the log of the density as a chart. This
approach requires a model space with a strong topology: the exponential Orlicz
space. Amari’s α-divergences (for α ∈ [−1, 1]) are of class C∞ on the exponen-
tial Orlicz manifold. In [20], the exponential function is replaced by the so-called
q-deformed exponential, which has an important interpretation in statistical mechan-
ics. (See chapter 7 in [23].) The model space used is L∞(μ). A more general class
of deformed exponentials is used in [35] to construct families of probability mea-
sures dubbed ϕ-families, in which the model spaces are Musielak–Orlicz spaces. A
deformed exponential function having linear growth is used in [25,27] to construct
statistical manifolds modelled on the Lebesgue Lλ(μ) spaces, including the Hilbert
space L2(μ).

Many of these references take the classical differential geometric approach of con-
structing the tangent space at each point, P , in a set of measures, and then building
towards a global geometry. With this approach it is natural to use local charts with
model spaces defined with respect to P [eg. the exponential Orlicz space LΦ(P)].
However, the global geometry contains no surprises—each connected component of
these manifolds is covered by a single chart.

A notion of central importance is that of a sufficient statistic, and so divergences
that are invariant in this sense are of particular interest. These include Csiszàr’s f -
divergences, of which Amari’s α-divergences are special cases. Any geometric objects
(such as a Riemannian metric), defined through derivatives of invariant divergences,
clearly retain this property. The question naturally arises whether or not these objects
are uniquely determined by this property. The uniqueness of the Fisher–Rao metric
under sufficient statistics was established for parametric manifolds by Chentsov [11],
and more recently for a large class of non-parametric manifolds in [4,5]. Rather than
constructing specific statisticalmanifolds, the latter references consider a parametrised
statistical model to be a generic Banach manifold on which is defined a continuous
map into a set of finite measures, having suitable properties. This approach admits
manifolds in which the measures do not necessarily have the same null sets [5].
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One of the most important statistical divergences is the Kullback–Leibler (KL)
divergence (which corresponds to α = −1). For probability measures P and Q having
densities p and q with respect to μ, this is defined as follows:

D(P|Q) =
∫

p log(p/q)dμ. (1)

TheKL divergence can be given the bilinear representation 〈p, log p−log q〉, in which
probability densities and their logs take values in dual function spaces [for example,
the Lebesgue spaces Lλ(μ) and Lλ/(λ−1)(μ)]. Loosely speaking, in order for D to be
smooth, the charts of any non-parametric manifold must “control” both the density
p and its log, and this provides one explanation of the need for strong topologies
in the model spaces of non-parametric exponential models. (They have to control
the density through the exponential function.) This observation led in [25,27] to the
introduction of a “balanced chart” (the sum of the density and its log), that directly
controls both, thereby enabling the use of model spaces with weaker topologies—the
Lebesgue Lλ(μ) spaces, including the Hilbert case λ = 2. The Amari α-divergences
then exhibit increasing degrees of smoothness with increasing λ.

None of the non-parametric manifolds discussed above makes reference to any
topology that the underlying sample spaceXmay possess. Statistical divergencesmea-
sure dependency between abstract randomvariables (those taking values inmeasurable
spaces). Nevertheless, topologies, metrics and linear structures on X play important
roles in many applications. For example, the Fokker–Planck and Boltzmann equations
both quantify the evolution of probability density functions on Rd , making direct ref-
erence to the latter’s topology through differential operators. A natural direction for
research in non-parametric information geometry is to adapt the manifolds outlined
above to such problems by incorporating the topology of the sample space in themodel
space, and one way of achieving this is to use model spaces of Sobolev type. This is
carried out in the context of the exponential Orlicz manifold in [19], where it is applied
to the spatially homogeneous Boltzmann equation.Manifolds modelled on the Banach
spaces Ck

b (B;R), where B is an open subset of an underlying (Banach) sample space,
are developed in [29], and manifolds modelled on Fréchet spaces of smooth densities
are developed in [7,9,29]. In this context, the Fisher–Rao metric is shown in [7] to be
the unique metric that is invariant under the action of the diffeomorphism group.

The aim of this paper is to develop Sobolev variants of the Lebesgue Lλ(μ) man-
ifolds of [25,27] when the sample space X is Rd . We construct, as a special case, a
class of Hilbert–Sobolev manifolds. In developing these, the author was motivated by
applications in nonlinear filtering. The equations of nonlinear filtering for diffusion
processes generalise the Fokker–Planck equation by adding a term that accounts for
partial observations of the diffusion. Let (Xt ,Yt , t ≥ 0) be a d + 1-vector Markov
diffusion process defined on a probability space (Ω,F ,P), and satisfying the Itô
stochastic differential equation

d

[
Xt

Yt

]
=

[
f (Xt )

h(Xt )

]
dt +

[
g(Xt ) 0
0 1

]
dVt , (2)
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where Y0 = 0, (Vt , t ≥ 0) is a d + 1-vector standard Brownian motion, independent
of X0, and f : Rd → R

d , g : Rd → R
d×d and h : Rd → R are suitably regular func-

tions. The nonlinear filter for X computes, at each time t , the conditional probability
distribution of Xt given the history of the observations process (Ys, 0 ≤ s ≤ t). Since
X and Y are jointly Markov the nonlinear filter can be expressed in a time-recursive
manner. Under suitable technical conditions, the observation-conditional distribution
of Xt admits a density, pt , (with respect to Lebesgue measure) satisfying the Kushner
Stratonovich stochastic partial differential equation [14]

dpt = Apt dt + pt (h − h̄t )d
(
Yt − h̄t dt

)
, (3)

where A is the Kolmogorov forward (Fokker–Planck) operator for X , and h̄t is the
(Ys, 0 ≤ s ≤ t)-conditional mean of h(Xt ).

The exponential Orlicz manifold was proposed as an ambient manifold for par-
tial differential equations of this type in [8] (and the earlier references therein), and
methods of projection onto submanifolds were developed. Applications of the Hilbert
manifold of [25] to nonlinear filtering were developed in [26,28], and information-
theoretic properties were investigated.

It was argued in [27,28] that statistical divergences such as the KL divergence are
natural measures of error for approximations to Bayesian conditional distributions
such as those of nonlinear filtering. This is particularly so when the approximation
constructed is used to estimate a number statistics of the process X , or when the
dynamics of (X ,Y ) are significantly nonlinear. We summarise these ideas here since
theymotivate the developments that follow; details can be found in [28]. If our purpose
is to estimate a single real-valued variate v(Xt ) ∈ L2(μ), then the estimate with the
minimummean-square error is the conditional mean v̄t := EΠt v = E(v(Xt )|(Ys, 0 ≤
s ≤ t)), whereE is expectation with respect toP, andΠt is the conditional distribution
of Xt . If the estimate is based on a (Ys, 0 ≤ s ≤ t)-measurable approximation to Πt ,
Π̂t , then the mean-square error admits the orthogonal decomposition

E

(
v(Xt ) − E

Π̂t
v
)2 = EEΠt (v − v̄t )

2 + E

(
v̄t − E

Π̂t
v
)2

. (4)

The first term on the right-hand side here is the statistical error, and is associated
with the limitations of the observation Y ; the second term is the approximation error
resulting from the use of Π̂t instead ofΠt . When comparing different approximations,
it is appropriate to measure the second term relative to the first; if v̄t is a poor estimate
of v(Xt ) then there is no point in approximating it with great accuracy. Maximising
these relative errors over all square-integrable variates leads to the (extreme) multi-
objective measure of mean-square approximation errors DMO(Π̂t |Πt ), where

DMO(Q|P) := 1

2
sup

v∈L2(P)

(
EQv − EPv

)2
EP (v − EPv)2

= 1

2
‖dQ/dP − 1‖2L2(P)

. (5)

DMO is Pearson’s χ2-divergence. Although extreme, it illustrates an important feature
ofmulti-objectivemeasures of error—they require probabilities of events that are small
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to be approximated with greater absolute accuracy than those that are large. A less
extreme multi-objective measure of mean-square errors is developed in [28]. This
constrains the functions v of (5) to have exponential moments. The resulting measure
of errors is shown to be of class C1 on the Hilbert manifold of [25], and so has this
same property on the manifolds developed here. See [28] for further discussion of
these ideas.

The paper is structured as follows: Sect. 2 provides the technical background in
mixed-norm weighted Sobolev spaces, where the Lλ spaces are based on a probability
measure. Section3 constructs (M,G, φ), amanifold offinitemeasuresmodelledon the
general Sobolev space of Sect. 2. It outlines the properties of mixture and exponential
representations of measures on the manifold, as well as those of the KL divergence.
In doing so, it defines the Fisher–Rao metric and Amari–Chentsov tensor. Section 4.1
shows that a particular choice of mixed-norm Sobolev space is especially suited to the
manifold in the sense that the density (and log-density) of any P ∈ M also belong to
the model space, and the associated nonlinear superposition operator is continuous—a
rare property in the Sobolev context [34]. Section 4.2 shows that this property does
not hold for fixed norm spaces, except in the special case G = W 2,1. It also develops
a general class of fixed norm spaces, for which the continuity property can be retained
if the Lebesgue exponent in the range space is suitably reduced. Section 5 develops
an embedded submanifold of probability measures (M0,G0, φ0), in which the charts
are centred versions of φ. Section 6 outlines applications to the problem of nonlinear
filtering for a diffusion process. Section 7makes some concluding remarks, discussing,
in particular, a variant of the results that uses the Kaniadakis deformed logarithm as a
chart.

2 Themodel spaces

For some t ∈ (0, 2], let θt : [0,∞) → [0,∞) be a strictly increasing function that is
twice continuously differentiable on (0,∞), such that limz↓0 θ ′

t (z) < ∞, and

θt (z) =
{
0 if z = 0
ct + zt if z ≥ zt

}
, where zt ≥ 0, and ct ∈ R. (6)

If t ∈ (1, 2] then we also require θt and −√
θt to be convex.

Example 1 (i) Simple: t ∈ [1, 2] and zt = ct = 0.
(ii) Smooth: t ∈ (0, 2], zt = 2 − t , ct = αt (1 − cos(βt zt )) − ztt , and

θt (z) = αt (1 − cos(βt z)), for z ∈ [0, zt ]. (7)

Here, βt zt is the unique solution in the interval (0, π) of the equation

(t − 1) tan(βt zt ) = βt zt , (8)

and αtβt sin(βt zt ) = t zt−1
t . (If t = 1 then βt = βt zt = π/2.) The compound

function R  z �→ θt (|z|) ∈ R is then of class C2.
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For some d ∈ N (= {1, 2, . . .}), let X be the σ -algebra of Lebesgue measurable
subsets of Rd ; let μt be the following probability measure on X :

μt (dx) = rt (x) dx := exp(lt (x))dx, where lt (x) := ∑
i (Ct − θt (|xi |)), (9)

and Ct ∈ R is such that
∫
exp(Ct − θt (|z|))dz = 1. In what follows, we shall suppress

the parameter t , and so lt , rt andμt will become l, r andμ, etc.μ ismutually absolutely
continuous with respect to Lebesgue measure.

For any 1 ≤ λ < ∞, let Lλ(μ) be the Banach space of (equivalence classes of)
measurable functions u : Rd → R for which ‖u‖Lλ(μ) := (

∫ |u|λdμ)1/λ < ∞. Let
C∞(Rd ;R) be the space of continuous functions with continuous partial derivatives
of all orders, and let C∞

0 (Rd ;R) be the subspace of those functions having compact
support.

For k ∈ N, let S := {0, . . . , k}d be the set of d-tuples of integers in the range
0 ≤ si ≤ k. For s ∈ S, we define |s| = ∑

i si , and denote by 0 the d-tuple for
which |s| = 0. For any 0 ≤ j ≤ k, S j := {s ∈ S : j ≤ |s| ≤ k} is the set
of d-tuples of weight at least j and at most k. Let Λ = (λ0, λ1, . . . , λk), where
1 ≤ λk ≤ λk−1 ≤ · · · ≤ λ0 < ∞, and let Wk,Λ(μ) be the mixed-norm, weighted
Sobolev space comprising functions a ∈ Lλ0(μ) that have weak partial derivatives
Dsa ∈ Lλ|s|(μ), for all s ∈ S1. For a ∈ Wk,Λ(μ) we define

‖a‖Wk,Λ(μ) :=
⎛
⎝∑

s∈S0
‖Dsa‖λ0

Lλ|s| (μ)

⎞
⎠

1/λ0

< ∞. (10)

The following theorem is a variant of a standard result in the theory of fixed-norm,
unweighted Sobolev spaces.

Theorem 1 The space (Wk,Λ(μ), ‖ · ‖Wk,Λ(μ)) is a Banach space.

Proof That ‖ · ‖Wk,Λ(μ) satisfies the axioms of a norm is easily verified. Suppose
that (an ∈ Wk,Λ(μ)) is a Cauchy sequence in this norm; then, since the spaces
Lλ j (μ), 0 ≤ j ≤ k are all complete, there exist functions vs ∈ Lλ|s|(μ), s ∈ S0 such
that Dsan → vs in Lλ|s|(μ). For any s ∈ S0, and any ϕ ∈ C∞

0 (Rd ;R),

∣∣∣∣
∫

(Dsan − vs)ϕ dx

∣∣∣∣ ≤
∫

|Dsan − vs ||ϕ| dx

=
∫

|Dsan − vs ||ϕ|r−1μ(dx)

≤ sup
x∈supp(ϕ)

(|ϕ|/r)(x)‖Dsan − vs‖L1(μ) → 0, (11)

and so
∫

vsϕ dx = lim
n

∫
Dsanϕ dx = (−1)|s| lim

n

∫
anD

sϕ dx = (−1)|s|
∫

v0D
sϕ dx,
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v0 admits weak derivatives up to order k, and Dsv0 = vs . So Wk,Λ(μ) is
complete. ��

The following developments show that functions inWk,Λ(μ) can be approximated
by particular functions in C∞(Rd;R) or C∞

0 (Rd;R). For any z ∈ (0,∞), let Bz :=
{x ∈ R

d : |x | ≤ z}. Let J ∈ C∞
0 (Rd; [0,∞)) be a function having the following

properties: (i) supp(J ) = B1; (ii)
∫
J dx = 1. For any 0 < ε < 1, let Jε(x) :=

ε−d J (x/ε); then Jε also has unit integral, but is supported on Bε . Since l is bounded
on bounded sets, any u ∈ L1(μ) is also in L1

loc(dx), and we can define the mollified
version Jε ∗ u ∈ C∞(Rd ;R) as follows:

(Jε ∗ u)(x) :=
∫

Jε(x − y)u(y) dy. (12)

For any m ∈ N, let Um ⊂ L1(μ) comprise those functions that take the value zero on
the complement of Bm . If u ∈ Um then Jε ∗ u ∈ C∞

0 (Bm+1;R).

Lemma 1 (i) For any λ ∈ [1,∞), m ∈ N and any u ∈ Um ∩ Lλ(μ), there exists an
0 < ε < 1 such that

‖Jε ∗ u − u‖Lλ(μ) < 1/m. (13)

(ii) For any a ∈ Wk,Λ(μ), 0 < ε < 1 and s ∈ S1, Ds(Jε ∗ a) = Jε ∗ (Dsa).

Proof It follows from Jensen’s inequality that, for any λ ∈ [1,∞),

|(Jε ∗ u)(x)|λ ≤ (Jε ∗ |u|λ)(x) =
∫

Jε(x − y)|u(y)|λr(y)−1μ(dy).

Since l is uniformly continuous on B2m+1, there exists a 0 < αm < 1 such that
|l(x) − l(y)| ≤ λ log 2 for all y ∈ B2m , |x − y| ≤ αm . So, for any 0 < ε < αm ,

‖Jε ∗ u‖λ
Lλ(μ)

≤
∫ ∫

Jε(x − y)|u(y)|λ exp(l(x) − l(y))μ(dy)dx

≤ 2λ

∫ ∫
Jε(x − y)dx |u(y)|λμ(dy) = 2λ‖u‖λ

Lλ(μ)
. (14)

It is a standard result that there exists a ϕ ∈ C∞
0 (B2m;R) such that ‖u − ϕ‖Lλ(μ) <

1/6m, which together with (14) shows that, for any 0 < ε < αm , ‖Jε ∗ u − Jε ∗
ϕ‖Lλ(μ) < 1/3m. Furthermore,

|(Jε ∗ ϕ)(x) − ϕ(x)| ≤
∫

Jε(x − y)|ϕ(y) − ϕ(x)| dy ≤ sup
|x−y|≤ε

|ϕ(y) − ϕ(x)|.

Since ϕ is uniformly continuous, there exists a 0 < βu < 1 such that, for any 0 < ε <

βu and all x , |(Jε ∗ϕ)(x)−ϕ(x)| < 1/3m. We can now choose 0 < ε < min{αm, βu},
which completes the proof of part (i).
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For a and s as in part (ii), and any ϕ ∈ C∞
0 (Rd ;R),

∫
(Jε ∗ a)(x)Dsϕ(x) dx =

∫ ∫
Jε(y)a(x − y) dyDsϕ(x) dx

=
∫ ∫

a(x − y)Dsϕ(x) dx Jε(y) dy

= (−1)|s|
∫ ∫

Dsa(x − y)ϕ(x) dx Jε(y) dy

= (−1)|s|
∫

(Jε ∗ Dsa)(x)ϕ(x) dx,

where we have used integration by parts |s| times in the third step. This completes the
proof of part (ii). ��

For ease of notation in what follows, we shall abbreviate Jε ∗ u to Ju, where it is
understood that ε has been chosen as in part (i). This can clearly be achieved uniformly
across any finite subset of Um , including sets of functions together with their weak
derivatives up to order k.

For any a ∈ Wk,Λ(μ) and m ∈ N, let am(x) := a(x)ρ(x/m), where ρ ∈
C∞
0 (Rd ;R) is such that

ρ(x) = 1 if |x | ≤ 1/2 and ρ(x) = 0 if |x | ≥ 1. (15)

Lemma 2 Jam → a in Wk,Λ(μ), and so C∞
0 (Rd ;R) is dense in Wk,Λ(μ).

Proof Since S0 is finite we may choose ε > 0 such that (13) is satisfied for all
u = Dsam with s ∈ S0 and λ = λ|s|. According to the Leibniz rule,

Dsam =
∑
σ≤s

m−|s−σ |DσaDs−σ ρ
∏

1≤i≤d

(
si
σi

)
, (16)

and so |Dsam | ≤ K
∑

σ |Dσa| ∈ Lλ|s|(μ). Since Dsam → Dsa for all x , it follows
from the dominated convergence theorem that it also converges in Lλ|s|(μ). Lemma 1
completes the proof. ��
Remark 1 If λ j = 2 for 0 ≤ j ≤ k then Hk(μ) := Wk,Λ(μ) is a Hilbert Sobolev
space with inner product

〈a, b〉Hk (μ) =
∑
s∈S0

〈
Dsa, Dsb

〉
L2(μ)

. (17)

3 Themanifolds of finite measures

In this section, we construct manifolds of finite measures on (Rd ,X ) modelled on the
Sobolev spaces of Sect. 2. The charts of the manifolds are based on the “deformed
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logarithm” logd : (0,∞) → R, defined by

logd y = y − 1 + log y. (18)

Now inf y logd y = −∞, supy logd y = +∞, and logd ∈ C∞((0,∞);R)with strictly
positive first derivative 1 + y−1, and so, according to the inverse function theorem,
logd is a diffeomorphism from (0,∞) ontoR. Letψ be its inverse. This can be thought
of as a “deformed exponential” function [23]. We use ψ(n) to denote its nth derivative
and, for convenience, set ψ(0) := ψ .

Lemma 3 (i) For any n ∈ N:

(1 + ψ)ψ(n) = ψ(n−1) − 1

2

n−1∑
j=1

(
n
j

)
ψ( j)ψ(n− j); (19)

in particular ψ(1) = ψ/(1 + ψ) > 0 and ψ(2) = ψ/(1 + ψ)3 > 0, and so ψ is
strictly increasing and convex.

(ii) For any n ≥ 2,

ψ(n) = Qn−2(ψ)

(1 + ψ)2(n−1)
ψ(1), (20)

where Qn−2 is a polynomial of degree no more than n − 2. In particular, ψ(n),
ψ(n)/ψ and ψ(n)/ψ(1) are all bounded.

Proof That ψ(1) and ψ(2) are as stated is verified by a straightforward computation.
Both (19) and (20) then follow by induction arguments. ��

Let G := Wk,Λ(μ) be the general mixed-norm space of Sect. 2, and let M be the
set of finite measures on (Rd ,X ) satisfying the following:

(M1) P is mutually absolutely continuous with respect to Lebesgue measure;
(M2) logd p = logd(dP/dμ) ∈ G;

(We denote measures in M by the upper-case letters P, Q, . . ., and their densities with
respect toμ by the corresponding lower case letters, p, q, . . .). In order to control both
the density p and its log, we employ the “balanced” chart of [25,27], φ : M → G.
This is defined by:

φ(P) = logd p = p − 1 + log p. (21)

Proposition 1 φ is a bijection onto G.

Proof It follows from (M2) that, for any P ∈ M , φ(P) ∈ G. Suppose, conversely,
that a ∈ G; then sinceψ(1) is bounded,ψ(a) ∈ L1(μ), and so defines a finite measure
P(dx) = ψ(a(x))μ(dx). Since ψ is strictly positive, P satisfies (M1); that it also
satisfies (M2) follows from the fact that logd ψ(a) = a ∈ G. We have thus shown that
P ∈ M and clearly φ(P) = a. ��
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The inverse map φ−1 : G → M takes the form

P(dx) = φ−1(a) = ψ(a(x))μ(dx). (22)

In [25,27], tangent vectors were defined as equivalence classes of differentiable curves
passing through a given base point, and having the same first derivative at this point.
Here, we use a different (but equivalent) definition, which is closer to that of member-
ship of M . For any P ∈ M , let P̃a(dx) := ψ(1)(a(x))μ(dx), where a = φ(P). (P̃a is
mutually absolutely continuous with respect to μ since ψ(1) is strictly positive.) We
define a tangent vector U at P to be a signed measure on (Rd ,X ) that is absolutely
continuous with respect to P̃a , with Radon–Nikodym derivative dU/d P̃a ∈ G. (This
definition is sound since, for every u ∈ G, U (dx) := u(x)P̃a(dx) defines such a
measure.) The tangent space, TPM , is the linear space comprising all such measures,
and the tangent bundle is the disjoint union T M := ∪P∈M (P, TPM). This is globally
trivialised by the chart Φ : T M → G × G, where

Φ(P,U ) =
(
φ(P), dU/d P̃a

)
. (23)

The derivative of a (Fréchet) differentiable, Banach-space-valued map f : M → Y

(at P and in the “direction” U ) is defined in the obvious way:

U f =
(
f ◦ φ−1

)(1)

a
u, where (a, u) = Φ(P,U ). (24)

Clearly u = Uφ. We shall also need a weaker notion of differentiability due to
Leslie [17,18]. Let A : G → Y be a continuous linear map and, for fixed a = φ(P) ∈
G, let R : R × G → Y be defined by

R(y, u) =
{
y−1

(
f ◦ φ−1(a + yu) − f ◦ φ−1(a)

) − Au if y �= 0,
0 if y = 0.

If R is continuous at (0, u) for all u ∈ G, then we say that f is Leslie differentiable at
P , with derivative

U f = d
(
f ◦ φ−1

)
a
u = Au. (25)

If f is Leslie differentiable at all P ∈ M then we say that it is Leslie differentiable.
This is a slightly stronger property than the “d-differentiability” used in [25,27], which
essentially demands continuity of R in the first argument only. Leslie differentiability
lies between Fréchet differentiability and Gateaux differentiability. (The latter does
not require the existence of the continuous linear map A.)

The construction above defines an infinite-dimensional smooth manifold of finite
measures, (M,G, φ), with atlas comprising the single chart, φ. M is a subset of an
instance of the manifold constructed in [27] (that in which the measurable space X

of [27] is Rd ), but has a stronger topology than the relative topology. Results in [27]
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concerning the smoothness of maps defined on the model space Lλ0(μ) are true a-
forterioriwhen Lλ0(μ) is replaced by G; in fact, even stronger results can be obtained
under the following hypothesis:

(E1) t ∈ (1, 2] and λ1 = λ0.

For some 1 ≤ β ≤ λ0, let Ψβ : G → Lβ(μ) be the nonlinear superposition
(Nemytskii) operator defined by Ψβ(a)(x) = ψ(a(x)) (see [3]).

Lemma 4 (i) Ψβ ∈ CN (G; Lβ(μ)), where

N = N (λ0, λ1, β, t) :=
{ �λ0/β� − 1 if (E1) does not hold,

�λ0/β� if (E1) holds.
(26)

For any 1 ≤ j ≤ N, Ψ ( j)
β : G → L(G j ; Lβ(μ)) is as follows

Ψ
( j)
β,a(u1, . . . , u j )(x) = ψ( j)(a(x))u1(x) · · · u j (x). (27)

(ii) If λ0/β ∈ N and (E1) does not hold, then the highest Fréchet derivative, Ψ (N )
β , is

Leslie differentiable, with derivative

(
dΨ

(N )
β,a uN+1

)
(u1, . . . , uN )(x) = ψ(N+1)(a(x))u1(x) · · · uN+1(x). (28)

(iii) Ψβ satisfies global Lipschitz continuity and linear growth conditions, and all its
derivatives are globally bounded.

Proof According to the mean value theorem, for any a, b ∈ G,

ψ(b) − ψ(a) = ψ(1)(αb + (1 − α)a)(b − a) for some 0 ≤ α(x) ≤ 1, (29)

and so the Lipschitz continuity and linear growth of Ψβ follow from the boundedness
of ψ(1). Let (an ∈ G\{a}) be a sequence converging to a in G. For any 1 ≤ j ≤ N
let

Δn := ψ( j−1)(an) − ψ( j−1)(a) − ψ( j)(a)(an − a)

Γn := ψ( j)(an) − ψ( j)(a). (30)

According to the mean-value theorem Δn = δn(an − a), where

δn = ψ( j)(αnan + (1 − αn)a) − ψ( j)(a) for some 0 ≤ αn(x) ≤ 1.

Hölder’s inequality shows that, for all u1, . . . , u j in the unit ball of G,

‖Δnu1 · · · u j−1‖Lβ(μ) ≤ ‖Δn‖Lν (μ) and ‖Γnu1 · · · u j‖Lβ(μ) ≤ ‖Γnu j‖Lν (μ),
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where ν := λ0β/(λ0 − (N − 1)β). In order to prove part (i), it thus suffices to show
that

‖an − a‖−1
G ‖Δn‖Lν (μ) → 0 and sup

‖u‖G=1
‖Γnu‖Lν (μ) → 0. (31)

If ν < λ0 [eg. if (E1) does not hold] then Hölder’s inequality shows that

‖Δn‖Lν (μ) ≤ ‖δn‖Lζ (μ)‖an − a‖Lλ0 (μ) and ‖Γnu‖Lν (μ) ≤ ‖Γn‖Lζ (μ)‖u‖Lλ0 (μ),

where ζ := λ0ν/(λ0 − ν). Now δn and Γn are bounded and converge to zero in
probability, and so the bounded convergence theorem establishes (31).

If ν = λ0 then (E1) holds. Suppose first that ν > 1, and let fm ∈ C∞(Rd;R)

be a sequence converging in G to some b ∈ G. For some 1 ≤ i ≤ d and a weakly
differentiable g : R

d → R, let g′ := ∂g/∂xi ; then (| fm |ν)′ = h( fm) f ′
m where

h(y) = ν|y|ν−1sgn(y). For any 0 < C < ∞,

1{|h( fm ) f ′
m |>C} ≤ 1{|h( fm)|ν∗

>C} + 1{| f ′
m |ν>C},

where ν∗ := ν/(ν − 1). Together with Hölder’s inequality, the uniform integrabil-
ity of the sequences |h( fm)|ν∗

and | f ′
m |ν , and the continuity of h, this shows that

h( fm) f ′
m → h(b)b′ in L1(μ). As in the proof of Theorem 1, this shows that |b|ν is

weakly differentiable with respect to xi , with derivative

(|b|ν)′ = h(b)b′ ∈ L1(μ). (32)

This enables the use of a log-Sobolev inequality. Let α := (t − 1)/t , and let Fα,Gα :
[0,∞) → [0,∞) be the complementary Young functions defined by

Fα(z) =
∫ z

0
logα(y + 1) dy and Gα(z) =

∫ z

0

(
exp(y1/α) − 1

)
dy. (33)

(see, for example, [33]). Fα is equivalent to anyYoung function F̃α , for which F̃α(z) =
z logα z for z ≥ 3, in the sense that there exist constants 0 < c1 < c2 < ∞ such that,
for all sufficiently large z, Fα(c1z) ≤ F̃α(z) ≤ Fα(c2z). Similarly, Gα is equivalent
to any Young function G̃α , for which G̃α(z) = exp(z1/α) for z ≥ 1. We denote the
associated Orlicz spaces L1 logα L(μ) and exp L1/α(μ), respectively. L1 logα L(μ) is
equal (modulo equivalent norms) to the Lorentz–Zygmund space L1,1;α(μ), which in
the context of the product probability space (Rd ,X , μ) is a rearrangement-invariant
space (see section 3 in [13]). It follows from Theorem 7.12 in [13], together with (32),
that

∥∥|b|ν∥∥L1 logα L(μ)
≤ K‖b‖ν

G , for some K < ∞.

This is clearly also true if ν = 1. In the light of the generalised Hölder inequality, in
order to prove (31) it now suffices to show that the sequences |δn|ν and |Γn|ν converge
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to zero in exp L1/α(μ), but this follows from their boundedness and convergence to
zero in probability. This completes the proof of part (i).

With the hypotheses of part (ii), let (tn ∈ R\{0}) and (vn ∈ G) be sequences
converging to 0 and uN+1, respectively, and let an := a + tnvn . Substituting this
sequence into (30), we obtain

t−1
n Δn = δnvn = δn(vn − uN+1) + δnuN+1.

Both terms on the right-hand side here converge to zero in Lλ0(μ) since δn is bounded
and converges to zero in probability. This completes the proof of part (ii). Part (iii)
follows from (29) and the boundedness of the ψ( j). ��

For 1 ≤ β ≤ λ0, let mβ, eβ : M → Lβ(μ) be defined by

mβ(P) = Ψβ(φ(P)) − 1 and eβ(P) = ı ◦ φ(P) − mβ(P), (34)

where ı : G → Lβ(μ) is the inclusion map. These are injective and share the smooth-
ness properties of Ψβ developed in Lemma 4. In particular,

Umβ = ψ(1)(a)
dU

d P̃a
= dU

dμ
and Ueβ = ψ(1)

ψ
(a)

dU

d P̃a
= dU

dP
, (35)

where a = φ(P), and the derivatives are Leslie derivatives if β = λ0, and (E1) does
not hold. These equations establish the measure-theoretic meaning of the (hitherto
abstract) tangent vector U .

The maps mβ and eβ can be used to investigate the regularity of statistical diver-
gences on M . The usual extension of the KL divergence to sets of finite measures,
such as M , is [2]:

D(P | Q) = Q(Rd) − P(Rd) + Eμ p log(p/q)

= Eμm1(Q) − Eμm1(P) + Eμ(mα(P) + 1)
(
eβ(P) − eβ(Q)

)
, (36)

where 1 < α, β ≤ λ0, α−1 + β−1 = 1, and Eμ is expectation (integration) with
respect to μ. This clearly requires λ0 ≥ 2. The following corollary of Lemma 4(i) can
be proved by induction, and careful use of Hölder’s inequality.

Corollary 1 If (E1) holds and λ0 ≥ 2 then, for any 0 ≤ i, j ≤ �λ0� − 1 with 1 ≤
i + j ≤ �λ0�, D ∈ Ci, j (M × M;R) with derivatives:

D(φ−1|φ−1)
(i, j)
(a,b)

(
u1, . . . , ui ; v1, . . . , v j

) = EμFi, j (a, b)u1 · · · uiv1 · · · v j , (37)
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where void products take the value 1,

Fi,0(a, b) =
i∑

l=0

(
i
l

)
ψ(l)(a)θ(i−l)(a) − ψ(i)(a)(1 + θ(b)) (38)

F0, j (a, b) = ψ( j)(b) − ψ(a)θ( j)(b) (39)

Fi, j (a, b) = −ψ(i)(a)θ( j)(b) if i, j ≥ 1 (40)

and θ : R → R is defined by θ(z) = z − ψ(z) + 1 = logψ(z).

If (E1) does not hold then the condition on the sum i + j becomes 1 ≤ i + j ≤
�λ0�−1 (seeCorollary 5.1 in [27]). This is equivalent ifλ0 takes a non-integer value. If,
on the other hand,λ0 ∈ N thenD admits fewermixedFréchet derivatives in the absence
of (E1); however, the highest mixed derivatives in (40) (those for which i + j = λ0)
then exist in the Leslie sense. Similar results hold for Amari’s α-divergences, for
α ∈ [−1, 1].

We can now use Eguchi’s characterisation of the Fisher–Rao metric on TPM [15]:
for any U , V ∈ TPM ,

〈U , V 〉P := −UVD = 〈Um2, Ve2〉L2(μ) = Eμ

p

(1 + p)2
UφVφ, (41)

where U acts on the first argument of D, and V acts on the second. It follows that
〈V ,U 〉P = 〈U , V 〉P and, for any y ∈ R, 〈yU , V 〉P = 〈U , yV 〉P = y〈U , V 〉P ;
furthermore,

〈U ,U 〉P ≤ Eμ(Uφ)2 ≤ ‖Uφ‖2G , (42)

and 〈U ,U 〉P = 0 if and only if Uφ = 0. So the metric is positive definite and
dominated by the chart-induced norm on TPM . However the Fisher–Rao metric and
chart-induced norm are not equivalent, even when the model space is L2(μ) [25].
In the general, infinite-dimensional case (TPM, 〈 · , · 〉P ) is not a Hilbert space; the
Fisher–Rao metric is a weak Riemannian metric.

If λ0 ≥ 3 then M also admits the Amari–Chentsov tensor. This is the symmetric
covariant 3-tensor field defined by

τP (U , V ,W ) = EμUm3Ve3We3 = Eμ

p

(1 + p)3
UφVφWφ. (43)

The Fisher–Rao metric and higher-order covariant tensor fields are smoother with
increasing values of λ0. Log-Sobolev embedding enhances this gain for particular
integer values of λ0. Suppose, for example, that λ0 = 2. If (E1) holds then the metric
is a continuous covariant 2-tensor field on M ; however if (E1) does not hold then,
although the composite map M  P �→ 〈U(P),V(P)〉P ∈ R is continuous for all
continuous vector fieldsU,V, the metric is not continuous in the sense of the operator
norm.
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Ifλ0 ≥ 2 then the variablesm2 and e2 are bi-orthogonal representations ofmeasures
in M . This can be seen in the following generalised cosine rule:

D(P|R) = D(P|Q) + D(Q|R)

−〈m2(P) − m2(Q), e2(R) − e2(Q)〉L2(μ). (44)

Setting R = P and using the fact that m2 + e2 = ı ◦ φ, where ı : G → L2(μ) is the
inclusion map, we obtain the global bound

D(P|Q) + D(Q|P) = 〈m2(P) − m2(Q) , e2(P) − e2(Q)〉L2(μ)

≤ 1

2
‖φ(P) − φ(Q)‖2L2(μ)

≤ 1

2
‖φ(P) − φ(Q)‖2G . (45)

4 Special model spaces

The construction of M and T M in the previous section is valid for any of the
weighted mixed-norm spaces developed in Sect. 2, including the fixed norm space
G f := Wk,(λ,...,λ)(μ). However, certain spaces are particularly suited to the deformed
exponential function ψ ; these are introduced next. A special class of mixed-norm
spaces, on which the nonlinear superposition operators associated withψ act continu-
ously, is developed in Sect. 4.1. Section 4.2 investigates fixed-norm spaces and shows
that, with the exception of the cases k = 1, λ ∈ [1,∞) and k = 2, λ = 1, they do not
share this property.

4.1 A family of mixed norm spaces

This section develops the mixed-norm space Gm := Wk,Λ(μ) with λ0 ≥ λ1 ≥ k and
λ j = λ1/ j for 2 ≤ j ≤ k. Lemma 4 can be augmented as follows.

Proposition 2 (i) For any a ∈ Gm, ψ(a) ∈ Gm.
(ii) The nonlinear superposition (Nemytskii) operator Ψm : Gm → Gm, defined by

Ψm(a)(x) = ψ(a(x)), is continuous.
(iii) Ψm(Gm) is convex.

Proof A partition of s ∈ S1 is a set π = {σ1, . . . , σn ∈ S1} such that
∑

i σi = s. Let
Π(s) denote the set of distinct partitions of s and, for any π ∈ Π(s), let |π | denote
the number of d-tuples in π . According to the Faá di Bruno formula, for any s ∈ S1
and any f ∈ C∞(Rd;R),

Dsψ( f ) = Fs( f ) :=
∑

π∈Π(s)

Kπψ(|π |)( f )
∏
σ∈π

Dσ f , (46)

where the Kπ < ∞ are combinatoric constants. Dsψ( f ) ∈ C∞(Rd ;R) since the
derivatives of ψ are bounded and Dσ f ∈ C∞(Rd ;R) for all σ ∈ π . We set F0 := ψ ,
and extend the domain of Fs to Gm in the obvious way.
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Let ( fn ∈ C∞(Rd ;R)) be a sequence converging in the sense of Gm to a. Since
the first derivative of ψ is bounded, the mean value theorem shows that ψ( fn) →
ψ(a) = F0(a) in the sense of Lλ0(μ). Furthermore, for any s ∈ S1,

∣∣Dsψ( fn) − Fs(a)
∣∣ ≤ K

∑
π∈Π(s)

∣∣∣ψ(|π |)( fn)
∣∣∣Γπ,n

+K
∑

π∈Π(s)

∣∣∣ψ(|π |)( fn) − ψ(|π |)(a)

∣∣∣ ∏
σ∈π

|Dσa|, (47)

where

Γπ,n :=
∣∣∣∣
∏
σ∈π

Dσ fn −
∏
σ∈π

Dσa

∣∣∣∣ ≤
∑
σ∈π

|Dσ ( fn − a)|
∏

τ∈π\{σ }

(|Dτ fn| + |Dτa|).

Now
∑

σ∈π |σ | = |s|, and so it follows from Hölder’s inequality that

‖Γπ,n‖Lλ/|s|(μ) ≤
∑
σ∈π

‖Dσ ( fn − a)‖Lλ/|σ |(μ)

∏
τ∈π\{σ }

∥∥|Dτ fn| + |Dτa|∥∥Lλ/|τ |(μ)
,

which, together with the boundedness of the derivatives of ψ , shows that the first
term on the right-hand side of (47) converges to zero in the sense of Lλ/|s|(μ).
The second term converges to zero in probability and is dominated by the function
C

∏
σ∈π |Dσa| ∈ Lλ/|s|(μ) for some C < ∞, and so it also converges to zero in the

sense of Lλ/|s|(μ). We have thus shown that, for any s ∈ S0, Dsψ( fn) converges to
Fs(a) in the sense of Lλ/|s|(μ). In particular, Fs(a) ∈ Lλ/|s|(μ). That ψ(a) is weakly
differentiable with derivatives Dsψ(a) = Fs(a), for all s ∈ S1, follows from argu-
ments similar to those in (11) with fn playing the role of an , and this completes the
proof of part (i).

Let (an ∈ Gm) be a sequence converging to a in the sense of Gm . The above
arguments, with an replacing fn , show that, for any s ∈ S0, Fs(an) → Fs(a) in the
sense of Lλ/|s|(μ), and this completes the proof of part (ii).

For any P0, P1 ∈ M and any y ∈ (0, 1), let Py := (1 − y)P0 + yP1. Clearly
py ∈ Gm ; we must show that log py ∈ Gm . Let f : (0,∞) → R be defined by

f (z) = 1(0,1)(z)(− log z)λ + 1[1,∞)(z)(z − 1)λ;

then | log z|λ ≤ f (z), and f is of class C2 with non-negative second derivative, and
so is convex. It follows from Jensen’s inequality that

Eμ| log py |λ ≤ Eμ f (py) ≤ (1 − y)Eμ f (p0) + yEμ f (p1) < ∞.
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A further application of the Faá di Bruno formula shows that, for any s ∈ S1,

|Ds log py | ≤ K1

∑
π∈Π(s)

| log(|π |)(py)|
∏
σ∈π

|Dσ py |

≤ K2

∑
π∈Π(s)

∏
σ∈π

∣∣∣∣D
σ p0
p0

+ Dσ p1
p1

∣∣∣∣.

Now pi = ψ(ai ) for some a0, a1 ∈ Gm , and so Dσ pi/pi = Fσ (ai )/ψ(ai ). Since
ψ(n)/ψ is bounded, the arguments used above to show that Dsψ(ai ) ∈ Lλ/|s|(μ) can
be used to show that Dσ ψ(ai )/ψ(ai ) ∈ Lλ/|σ |(μ). Hölder’s inequality then shows
that Ds log py ∈ Lλ/|s|(μ). We have thus shown that log py ∈ Gm . So Py ∈ M , and
this completes the proof of part (iii). ��

4.2 Fixed norm spaces

Proposition 2 shows that the function ψ defines a superposition operator that “acts
continuously” on the mixed norm Sobolev space Gm . The question naturally arises
whether or not it has this property with respect to any fixed norm spaces (other than
W 1,(1,1)(μ), which is a special instance of Gm). Since, for k ≥ 2 and λ ≥ λ0, the
space G f := Wk,(λ,...,λ)(μ) is a subset of Gm and has a topology stronger than the
relative topology, it is clear that Ψm(G f ) ⊂ Ψm(Gm) ⊂ Gm , and that the restriction
of Ψm to G f , is continuous. However, except in one specific case, ψ does not define a
superposition operator with domain and rangeG f , as the following proposition shows.

Proposition 3 If λ > 1 and k ≥ 2 then there exists an a ∈ G f for which ψ(a) /∈ G f .

Proof (Adapted from Dahlberg’s counterexample) Let t ∈ (0, 2], zt ≥ 0 and lt :
R
d → R be as in Sect. 2, and let {Bn ⊂ R

d , n ∈ N} be the sequence of closed spheres
with centres σn = (n1/t , 0, . . . , 0) and radii 1/n. If x ∈ Bn then |lt (x) − lt (σn)| ≤
K/

√
n for some K < ∞. Let ϕ ∈ C∞

0 (Rd ;R) be such that

ϕ(y) = y1 if |y| ≤ 1/2 and ϕ(y) = 0 if |y| ≥ 1.

Since ψ is not a polynomial, its kth derivative ψ(k) is not identically zero, and we can
choose −∞ < ζ1 < ζ2 < ζ1 + 1 such that |ψ(k)(z)| ≥ ε for all z ∈ [ζ1, ζ2] and some
ε > 0. Finally, let a : Rd → R be defined by the sum

a(x) = ζ1 +
∞∑

n=m

αnϕ(n(x − σn)), (48)

where α = exp(2/((k + 1)λ − 1)) and m = �zt� + 16. (The support of the nth term
in the sum here is a subset of Bn , and so a is well defined and of class C∞.) We claim
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that a ∈ G f ; in fact, for any s ∈ S1 with |s| = j ,

Eμ|Dsa|λ ≤ K
∞∑

n=m

αλnn jλ exp(−n)

∫
|Dsϕ(n(x − σn))|λdx

= K
∞∑

n=m

αλnn jλ−d exp(−n)

∫
|Dsϕ(y)|λdy < ∞, (49)

and a similar bound canbe found forEμ|a−ζ1|λ. It now suffices to show that Dsψ(a) /∈
Lλ(μ), where s = (k, 0, . . . , 0). Let

Tn :=
{
x ∈ R

d : |x − σn| ≤ 1/2n and 0 ≤ (x − σn)1 ≤ (nαn)−1(ζ2 − ζ1)
}
;

then, for any x ∈ Tn , a(x) = ζ1 + nαn(x − σn)1 ∈ [ζ1, ζ2], and so

Eμ|Dsψ(a)|λ ≥
∞∑

n=m

αkλnnkλ
∫
Tn

|ψ(k)(ζ1 + nαn(x − σn)1)|λr(x) dx

≥ K1ε
λ

∞∑
n=m

αkλnnkλ exp(−n)|Tn|

= K2ε
λ

∞∑
n=m

α(kλ−1)nnkλ−d exp(−n) = +∞, (50)

where |Tn| is the Lebesgue measure of Tn , and this completes the proof. ��
As (49) shows, no amount of “derivative sacrifice” will overcome this property of

G f : there is no choice of k ≤ m < ∞ such thatψ(a) ∈ G f for all a ∈ Wm,(λ,...,λ)(μ).
However,we are able to prove the following,which includes the case k = 2,λ = ν = 1.

Proposition 4 Let k ≥ 2, let λ ≥ k − 1 and let ν := (λ + 1)/k.

(i) For any a ∈ G f , ψ(a) ∈ Wk,(ν,...,ν)(μ).
(ii) The nonlinear superposition operator Ψ f : G f → Wk,(ν,...,ν)(μ), defined by

Ψ f (a)(x) = ψ(a(x)), is continuous.

Proof As in the proof of Proposition 2, it suffices to show that, for any a ∈ G f , any
sequence (an ∈ G f ) converging to a in G f , and any s ∈ S0, Fs(an) → Fs(a) in
Lν(μ), where Fs is as defined in (46). For any s with |s| < k this can be accomplished
by means of Hölder’s inequality, as in the proof of Proposition 2. Furthermore, even
if |s| = k, all terms in the sum on the right-hand side of (46) for which |π | < k can
be treated in the same way. (There are no more than k − 1 factors in the product,
each of which is in Lλ(μ), and λ/(k − 1) ≥ ν.) This leaves the terms for which
|π | = |s| = k; in order to show that these converge in Lν(μ) it suffices to show that,
for any 1 ≤ i ≤ d, the sequence (|ψ(k)(an)(a′

n)
k |ν) is uniformly integrable, where,

for any weakly differentiable g : Rd → R, g′ := ∂g/∂xi .
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Let ρ ∈ C∞
0 (Rd ;R) be as defined in (15), and let

Kρ := supx
(
ρ(x) + 2|ρ′(x)| + |ρ′′(x)|).

Let h : G f → L1(μ) be defined by h(a) = |a| + |a′| + (|a| + |a′| + |a′′|)λ;
then h(Kρan) → h(Kρa) in L1(μ) and so, according to the Lebesgue–Vitaly the-
orem, (h(Kρan)) is a uniformly integrable sequence. So, according to the de la
Vallée Poussin theorem, there exists a convex increasing function F̃ : [0,∞) →
[0,∞) such that H̃(z) := F̃(z)/z is an unbounded, non-decreasing function and
supn Eμ F̃(h(Kρan)) < ∞. Let H : [0,∞) → [0,∞) be defined by

H(z) =
{
0 if z = 0
z−1

∫ z
0 H̃(y) dy otherwise.

}
≤ H̃(z) (51)

For any y ∈ [0,∞), let zy := inf{z ∈ [0,∞) : H̃(z) ≥ y}; for any z > 2zy ,

H(z) = z−1
∫ zy

0
H̃(t) dt + z−1

∫ z

zy
H̃(t) dt ≥ (z − zy)y/z ≥ y/2,

and so H is also unbounded. Furthermore

zH (1)(z) = H̃(z) − H(z) ∈ [0, H̃(z)]. (52)

Summarising the above, H is unbounded, non-decreasing and differentiable, and so
F : [0,∞) → [0,∞), defined by F(z) = zH(z) is another de la Vallée Poussin
function for which supn EμF(h(Kρan)) < ∞.

Let G : [0,∞) → [0,∞) be defined by G(z) = zH(|z/C |1/kν), where C :=
supz |ψ(k)(z)|ν ; then, for any f ∈ C∞

0 (Rd;R),

EμG
(
|ψ(k)( f )|ν | f ′|kν

)
≤ K1Eμ|ψ(k)( f )|| f ′|kνH(| f ′|)

≤ K2Eμ

ψ(1)( f )

(1 + ψ( f ))k
| f ′|kνH(| f ′|)

= K2

∫
ψ( f )′

(1 + ψ( f ))k
f ′| f ′|kν−2H(| f ′|)r dx

= K3

∫
(1 + ψ( f ))1−k

[
| f ′|kν−2 f ′′H(| f ′|)

+| f ′|kν−1H (1)(| f ′|) f ′′ + f ′| f ′|kν−2H(| f ′|)l ′
]
r dx

≤ K3(R( f ) + S( f ) + T ( f )), (53)
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where K1 and K2 depend only on the function ψ , K3/K2 = (kν − 1)/(k − 1) and
R( f ), S( f ) and T ( f ) are as follows:

R( f ) := Eμ| f ′|kν−2| f ′′|H(| f ′|),
S( f ) := Eμ| f ′|kν−1H (1)(| f ′|)| f ′′| ≤ Eμ| f ′|kν−2| f ′′|H̃(| f ′|),
T ( f ) := Eμ| f ′|kν−1H(| f ′|)|l ′|. (54)

In (53), we have used the boundedness of ψ(k) in the first step, Lemma 3(ii) in the
second step and integration by parts with respect to xi in the fourth step. (If t = 1 in
Example 1(i), then θt (| · |) is not differentiable at 0 and the integration by parts has to
be accomplished separately on the two sub-intervals (−∞, 0) and (0,∞).) In (54), we
have used (52). Let am,n := an(x)ρ(x/m) ∈ Um ; then, with J as defined in section 2,

R(Jam,n) ≤ EμF
(|(Jam,n)

′| + (|(Jam,n)
′| + |(Jam,n)

′′|)λ)
= EμF

(|Ja′
m,n| + (|Ja′

m,n| + |Ja′′
m,n|)λ

)
≤ Eμ J F

(|a′
m,n| + (|a′

m,n| + |a′′
m,n|)λ

)
≤ EμF

(|a′
m,n| + (|a′

m,n| + |a′′
m,n|)λ

) + 1/m

≤ EμF(h(Kρan)) + 1,

where we have used the definition of F in the first step, Lemma 1(ii) in the second
step, Jensen’s inequality in the third step, Lemma 1(i) in the fourth step and (16) in
the final step. Similar bounds can be found for S(Jam,n) and, if t ∈ (0, 1] (so that l ′
is bounded), T (Jam,n).

If t ∈ (1, 2] we note that
(| f ′|λH(| f ′|))′ = λ| f ′|λ−1sgn( f ′) f ′′H(| f ′|) + | f ′|λH (1)(| f ′|)sgn( f ′) f ′′,

so that Eμ|(| f ′|λH(| f ′|))′| ≤ λR( f ) + S( f ), and

‖|(Jam,n)
′|λH(|(Jam,n)

′|)‖W 1,(1,1)(μ) ≤ (λ + 2)(Eμ F̃(h(Kρan)) + 1).

Let α := (t − 1)/t , and let L1 logα L(μ) and exp L1/α(μ) be the complementary
Orlicz spaces defined in the proof of Lemma 4. It follows from Theorem 7.12 in [13]
that, for some K4 < ∞ not depending on m or n,

‖|(Jam,n)
′|λH(|(Jam,n)

′|)‖L1 logα L(μ) ≤ K4(λ + 2)(Eμ F̃(h(Kρan)) + 1).

For any |xi | > zt , l ′(x) = −t |xi |t−1sgn(xi ), and so l ′ ∈ exp L1/α(μ), and the gener-
alised Hölder inequality shows that, for some K5 < ∞

T (Jam,n) ≤ K5‖|(Jam,n)
′|λH(|(Jam,n)

′|)‖L1 logα L(μ)‖l ′‖exp L1/α(μ).
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We have thus shown that, for any t ∈ (0, 2],

EμG
(
|ψ(k)(Jam,n)|ν |(Jam,n)

′|kν
)

≤ K6(Eμ F̃(h(Kρan)) + 1), (55)

where K6 < ∞ does not depend onm or n. Since G is a de la Vallée Poussin function,
the sequence (|ψ(k)(Jam,n)|ν |(Jam,n)

′|kν, m ∈ N), for any fixed n, is uniformly
integrable and so, according to Lemma 2, converges in L1(μ) to |ψ(k)(an)|ν |a′

n|kν .
Fatou’s theorem now shows that

EμG
(
|ψ(k)(an)|ν |a′

n|kν
)

≤ K6(Eμ F̃(h(Kρan)) + 1),

which in turn shows that the sequence (|ψ(k)(an)|ν |a′
n|kν, n ∈ N) is uniformly inte-

grable. ��
If we want all spatial derivatives of ψ(a) to be continuous maps from G f to Lν(μ)

(for some ν ≥ 1) then the fixed norm space G f should have Lebesgue exponent
λ = max{2, νk − 1}. (The resulting manifold will not have a strong enough topology
for global information geometry unless λ ≥ 2.) The mixed norm space Gm requires
λ1 = νk, λ2 = νk/2, . . . , λk = ν. This places a slightly higher integrability constraint
on the first derivative, but lower constraints on all other derivatives (significantly lower
if k ≥ 3). Furthermore, if G f is used as a model space, then ψ(a) and its first partial
derivatives actually belong to Lλ(μ), and so the true range of the superposition operator
in this context is a mixed norm space, whether or not we choose to think about it in
this way.

The case in which λ = 1 is of particular interest. Proposition 4 then shows
that ψ defines a nonlinear superposition operator that acts continuously on Gs :=
W 2,(1,1,1)(μ). The use of such a low Lebesgue exponent precludes the results in
Sect. 3 concerning the smoothness of the KL-divergence. In particular, we cannot
expect to retain global geometric constructs such as the Fisher–Rao metric. However,
D(μ| · ) : Ms → [0,∞) is still continuous for all t ∈ (0, 2], and D( · |μ) is finite
if t = 2. Since ψ(1) is bounded, there is no difficulty in extending these results as
follows.

Corollary 2 For any λ0 ∈ [1,∞), ψ defines a nonlinear superposition operator that
acts continuously on Gms := W 2,(λ0,1,1)(μ).

Remark 2 When the model space, G, is Gm , Gs or Gms , then condition (M2) can be
replaced by: (M2’) p, log p ∈ G.

5 Themanifolds of probability measures

In this section we shall assume that λ0 > 1, or that λ0 = 1 and the embedding
hypothesis (E1) holds. Let M0 ⊂ M be the subset of the general manifold of Sect. 3
(that modelled on G := Wk,Λ(μ)), whose members are probability measures. These
satisfy the additional hypothesis:
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(M3) Eμ p = 1.

The co-dimension 1 subspaces of Lλ(μ) and G, whose members, a, satisfy Eμa = 0
will be denoted Lλ

0(μ), and G0. Let φ0 : M0 → G0 be defined by

φ0(P) = φ(P) − Eμφ(P) = logd p − Eμ logd p. (56)

Proposition 5 (i) φ0 is a bijection onto G0. Its inverse takes the form

P(dx) = ψ(a(x) + Z(a))μ(dx), (57)

where Z ∈ CN (G0;R) is an (implicitly defined) normalisation function, and
N = N (λ0, λ1, 1, t) is as defined in (26).

(ii) The first (and if N ≥ 2 second) derivative of Z is as follows:

Z (1)
a u = −EPau

Z (2)
a (u, v) = −Eμψ(2)(a + Z(a))(u − EPau)(v − EPav)

Eμψ(1)(a + Z(a))
, (58)

where Pa := P̃a+Z(a)/P̃a+Z(a)(R
d) and P̃a(dx) = ψ(1)(a(x))μ(dx).

(iii) If λ0 − 1 ∈ N and (E1) does not hold then Z (λ0−1) is Leslie differentiable (with
derivative is as in (58) if λ0 = 2).

Proof Let Υ : G0 × R → (0,∞) be defined by

Υ (a, z) = Eμψ(a + z) = EμΨ1(a + z), (59)

where Ψβ is as in Lemma 4. It follows from Lemma 4, that Υ is of class CN and that,
for any u ∈ G0,

Υ (1,0)
a,z u = Eμψ(1)(a + z)u and Υ (0,1)

a,z = Eμψ(1)(a + z) > 0. (60)

Since ψ is convex,

sup
z

Υ (a, z) ≥ sup
z

ψ(Eμ(a + z)) = sup
z

ψ(z) = +∞;

furthermore, the monotone convergence theorem shows that

lim
z↓−∞ Υ (a, z) = Eμ lim

z↓−∞ ψ(a + z) = 0.

So Υ (a, · ) is a bijection with strictly positive derivative, and the inverse function
theorem shows that it is a CN -isomorphism. The implicit mapping theorem shows
that Z : G0 → R, defined by Z(a) = Υ (a, · )−1(1), is of class CN . For some
a ∈ G0, let P be the probability measure on X with density p = ψ(a + Z(a)); then
φ0(P) = a and P ∈ M0, which proves part (i).
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That the first derivative of Z is as in (58) follows from (60). Since Eμψ(1)(a +
Z(a)) > 0, parts (ii) and (iii) follow from Lemma 4 and the chain and quotient rules
of differentiation (which hold for Leslie derivatives). ��

Expressed in charts, the inclusion map ı : M0 → M is as follows

ρ(a) := φ ◦ φ−1
0 (a) = a + Z(a), (61)

and has the same smoothness properties as Z . The following goes further.

Proposition 6 (M0,G0, φ0) is aCN -embedded submanifold of (M,G, φ), where N =
N (λ0, λ1, 1, t) is as defined in (26).

Proof Let η : G → G0 be the superposition operator defined by η(a)(x) = a(x) −
Eμa; then η is of class C∞, has first derivative η

(1)
a u = u − Eμu, and zero higher

derivatives. Now η◦ρ is the identity map of G0, which shows that ρ is homeomorphic
onto its image, ρ(G0), endowed with the relative topology. Furthermore, for any
u ∈ G0,

u = (η ◦ ρ)(1)a u = η
(1)
ρ(a)ρ

(1)
a u,

and so ρ
(1)
a is a toplinear isomorphism, and its image, ρ

(1)
a G0, is a closed linear

subspace of G. Let Ea be the one dimensional subspace of G defined by Ea =
{yψ(1)(ρ(a)) : y ∈ R}. If u ∈ Ea and v ∈ ρ

(1)
a G0 then there exist y ∈ R and w ∈ G0

such that

Eμuv = yEμψ(1)(ρ(a))(w − EPaw) = 0.

So Ea ∩ ρ
(1)
a G0 = {0}, and ρ

(1)
a splits G into the direct sum Ea ⊕ ρ

(1)
a G0. We have

thus shown that ρ is a CN -immersion, and this completes the proof. ��
For any P ∈ M0, the tangent space TPM0 is a subspace of TPM of co-dimension

1; in fact, as shown in the proof of Proposition 6,

TPM = TPM0 ⊕ {yÛ , y ∈ R}, where Ûφ = ψ(1)(φ(P)). (62)

Let Φ0 : T M0 → G0 × G0 be defined as follows:

Φ0(P,U ) = Φ(P,U ) − EμΦ(P,U ). (63)

Then Φ ◦ Φ−1
0 (a, u) = (ρ(a), ρ

(1)
a u). For any (P,U ) ∈ T M0, Uφ = ρ

(1)
a u =

u − EPau, and so tangent vectors in TPM0 are distinguished from those merely in
TPM by the fact that their total mass is zero:

U (Rd) =
∫

(u − EPau)d P̃a = 0. (64)
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The map Z of (57) is (the negative of) the additive normalisation function, α,
associated with the interpretation of M0 as a generalised exponential model with
deformed exponential function ψ . (See Chapter 10 in [23]. We use the symbol Z
rather than−α for reasons of consistency with [25,27].) In this context, the probability
measure Pa of (58) is called the escort measure. In [21], the authors considered local
charts on the Hilbert manifold of [25]. In the present context, these take the form
φP : M0 → GP , whereGP is the subspace ofG whosemembers, b, satisfyEPab = 0.
This amounts to re-defining the origin of G as φ(P), and using the co-dimension 1
subspace that is tangential to the image φ(M0) at this new origin as the model space.
This local chart is normal at P for the Riemannian metric and Levi–Civita parallel
transport induced by the global chart φ on M . However, the metric differs from the
Fisher–Rao metric on all fibres of the tangent bundle except that at μ. The local model
space, GP , is based on the reference measure μ, not the local measure P , as is the
case with the exponential Orlicz manifold.

The equivalent on M0 of the maps mβ and eβ of Sect. 3 are the maps mβ,0, eβ,0 :
M0 → Lβ

0 (μ), defined by

mβ,0(P) = mβ(P) and eβ,0(P) = eβ(P) − Eμeβ(P). (65)

Their properties follow from those of mβ and eβ .

6 Application to nonlinear filtering

Wesketchhere an applicationof themanifolds ofSects. 3 and5 to thenonlinear filtering
problem discussed in Sect. 1. An abstract filtering problem (in which X is a Markov
process evolving on a measurable space) was investigated in [26]. Under suitable
technical conditions, it was shown that the (Ys, 0 ≤ s ≤ t)-conditional distribution of
Xt , Πt , satisfies an infinite-dimensional stochastic differential equation on the Hilbert
manifold of [25], and this representation was used to study the filter’s information-
theoretic properties. This equation involves the normalisation constant Z , which is
difficult to use since it is implicitly defined, and so it is of interest to use a manifold
of finite measures not involving Z , such as M of Sect. 3.

If the conditional distribution Πt has a density with respect to Lebesgue measure,
pt , satisfying the Kushner–Stratonovich Eq. (3), then its density with respect to μ,
πt = pt/r , also satisfies (3), but with the transformed forward operator:

Aπ = 1

2r

∂2Γ i j rπ

∂xi∂x j
− 1

r

∂ f i rπ

∂xi
, (66)

where Γ = gg∗ and we have used the Einstein summation convention. The density
πt also satisfies

dπt = Aπt dt + πt
(
h − h̄(πt )

)(
dYt − h̄(πt )dt

)
, (67)
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where, for appropriate densities p, h̄(p) := (Eμ p)−1Eμ ph. This equation is homo-
geneous, in the sense that if πt is a solution then so is απt , for any α > 0. A
straightforward formal calculation shows that logd πt satisfies the following stochastic
partial differential equation

dat = u( · , at )dt + v( · , at )
(
dYt − h̄(ψ(at ))dt

)
, (68)

where

v(x, a) = (1 + ψ(a(x)))(h(x) − h̄(ψ(a))),

u(x, a) = 1

2
Γ i j (x)

[
∂2a

∂xi∂x j
(x) + (1 + ψ(a(x)))−2 ∂a

∂xi
(x)

∂a

∂x j
(x)

]

+Fi (x)
∂a

∂xi
(x) + (1 + ψ(a(x)))F0(x) − 1

2

[
h(x) − h̄(ψ(a))

]2
, (69)

and

Fi = Γ i j ∂l

∂x j
+ ∂Γ i j

∂x j
− f i ,

F0 = 1

2

∂2Γ i j

∂xi∂x j
+ ∂Γ i j

∂xi
∂l

∂x j
+ 1

2
Γ i j

[
∂2l

∂xi∂x j
+ ∂l

∂xi
∂l

∂x j

]
− f i

∂l

∂xi
− ∂ f i

∂xi
.

In order to make sense of (68) and (69), we need further hypotheses. The following
are used for illustration purposes, and are not intended to be ripe.

(F1) G = Gm (the mixed norm space of Sect. 4.1) with λ0 = λ1 ≥ 2k ≥ 4; t = 1
and θ1(| · |) ∈ C∞(R; [0,∞)).

(F2) The functions f , g and h are of class C∞(Rd).
(F3) The functions f and h, and all their derivatives, satisfy polynomial growth

conditions in |x |.
(F4) The function g and all its derivatives are bounded.

In particular, these allow h̄, u and v to be defined on M in a precise way.

Proposition 7 (i) The functional H̄ : Gm → R, defined by H̄(a) = h̄(ψ(a)), is of
class C�λ0�−1.

(ii) Let k ≥ 2 and λ1 ≥ 2k. If a ∈ Gm then u( · , a), v( · , a) ∈ Hk−2(μ), where
Hk−2(μ) is the Hilbert Sobolev space of Remark 1.

(iii) The superposition operators U,V : Gm → Hk−2(μ), defined by U(a)(x) =
u(x, a) and V(a)(x) = v(x, a), are continuous.

Proof It follows from (F1–F4) that

Fi , F0, h,∈ Wk,(λ,λ,...,λ)(μ) for every k ∈ N, and every λ ∈ [1,∞). (70)

Lemma 4 shows that, for any ε > 0, Ψ1+ε is of class C�λ0/(1+ε)�−1. For any λ0 ∈
[2,∞) there exists an ε > 0 such that �λ0/(1 + ε)� = �λ0� and so with this choice,
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Ψ1+ε is of class C�λ0�−1. Hölder’s inequality shows that, for any 0 ≤ i ≤ �λ0� − 2,
any a, b ∈ Gm and any u1, . . . , ui in the unit ball of Gm ,

Eμ

∣∣(Ψ (i)
1+ε,b − Ψ

(i)
1+ε,a − Ψ

(i+1)
1+ε,a(b − a))(u1, . . . , ui )h

∣∣
≤ ∥∥Ψ

(i)
1+ε,b − Ψ

(i)
1+ε,a − Ψ

(i+1)
1+ε,a(b − a)

∥∥
L(Gi

m ;L1+ε (μ))
‖h‖L(1+ε)/ε (μ),

Eμ

∣∣(Ψ (i+1)
1+ε,b − Ψ

(i+1)
1+ε,a)h

∣∣ ≤ ∥∥Ψ
(i+1)
1+ε,b − Ψ

(i+1)
1+ε,a

∥∥
L(Gi+1

m ;L1+ε (μ))
‖h‖L(1+ε)/ε (μ),

which shows that the mapGm  a �→ Eμψ(a)h ∈ R is of classC�λ0�−1. The quotient
rule of differentiation and the fact that Eμψ(a) > 0 complete the proof of part (i).

Parts (ii) and (iii) can be proved by applying Hölder’s inequality to the weak deriva-
tives of the various components of u( · , a) and v( · , a). The quadratic term in u is the
most difficult to treat, and so we give a detailed proof for this. We begin by noting that
(1 + ψ(a))−1∂a/∂xi = ∂(a − ψ(a))/∂xi . For any |s| ≤ k − 2

Ds ∂ψ(a)

∂xi
∂ψ(a)

∂x j
=

∑
σ≤s

Dσ ∂ψ(a)

∂xi
Ds−σ ∂ψ(a)

∂x j

∏
1≤l≤d

(
sl
σl

)
. (71)

According to Proposition 2, the nonlinear superposition operator Ψσ,i : Gm →
Lλ1/(|σ |+1)(μ) defined by Ψσ,i (a) = Dσ (∂ψ(a)/∂xi ) is continuous, and so it follows
fromHölder’s inequality that the same is true ofΥs,i, j : Gm → Lλ1/(|s|+2)(μ) defined
by the right-hand side of (71). Togetherwith (F4), this shows thatΥ : Gm → Hk−2(μ)

defined by Υ (a) = Γ i j (∂ψ(a)/∂xi )(∂ψ(a)/∂x j ) is continuous.
The other components ofu( · , a) and the only component of v( · , a) can be shown to

have the stated continuity by similar arguments. These make use of (70), Proposition 2
and part (i) here. ��
Remark 3 There are many variants of this proposition, corresponding to different
choices of the domain and range of U and V. If λ0 and λ1 are suitably large, then
U and V admit various derivatives on M .

One application of Proposition 7 is in the development ofprojective approximations,
as proposed in the context of the exponential Orlicz manifold in [8] and the earlier
references therein. As a particular instance, suppose that k ≥ 2 and λ1 ≥ 2k; let
(ηi ∈ Ck(Rd) ∩ Gm, 1 ≤ i ≤ m) be linearly independent, and define

Gm,η =
{
a ∈ Gm : a = αiηi for some α ∈ R

m
}
. (72)

This is an m-dimensional linear subspace of both Gm and Hk−2(μ). We can use the
inner product of Hk−2(μ) to project members of Hk−2(μ) onto Gm,η. In particular,
we can projectU(a) andV(a) ontoGM,η for any a ∈ Gm,η to obtain continuous vector
fields of the finite-dimensional submanifold of M defined by Mη = φ−1(Gm,η). Since
the model space norms of Hk−2(μ) dominate the Fisher–Rao metric on every fibre of
the tangent bundle (42), the projection takes account of the information theoretic cost
of approximation, as well as controlling the derivatives of the conditional density πt .
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Mη is a finite-dimensional deformed exponential model, and is trivially a C∞-
embedded submanifold of M . Many other classes of finite-dimensional manifold also
have this property. For example, since Ψ (Gm) is convex, certain finite-dimensional
mixture manifolds modelled on the space Gm,η, where ηi ∈ Ψ (Gm), are also C∞-
embedded submanifolds of M . This is also true of particular finite-dimensional
exponential models.

7 Concluding remarks

This paper has developed a class of infinite-dimensional statistical manifolds that use
the balanced chart of [25,27] in conjunction with a variety of probability spaces of
Sobolev type. It has shown that the mixed-norm space of Sect. 4.1 is especially suited
to the balanced chart (and any other chart with similar properties), in the sense that
densities (and log-densities) then also belong to this space and vary continuously on
the manifolds. It has shown that this property is also true of a particular fixed norm
space involving two derivatives, but can be retained for fixed norm spaces with more
than two derivatives only with the loss of Lebesgue exponent. The paper has outlined
an application of the manifolds to nonlinear filtering (and hence to the Fokker–Planck
equation). Although motivated by problems of this type, the manifolds are clearly
applicable in other domains, the Boltzmann equation of statistical mechanics being
an obvious candidate.

The deformed exponential function used in the construction ofM has linear growth,
a feature that has recently been shown to be advantageous in quantum information
geometry [24]. The linear growth arises from the deformed logarithm of (21), which
is dominated by the density, p, when the latter is large. As recently pointed out
in [21], this property is shared by other deformed exponentials, notably the Kani-
adakis 1-exponential ψK (z) = z + √

1 + z2. The corresponding deformed logarithm
is logK (y) = (y2 −1)/2y, and so the density is controlled (when close to zero) by the
term −1/p rather than log p, as used here. In the non-parametric setting, the need for
both p and 1/p to be in Lλ0(μ) places significant restrictions on membership of the
manifold. If, for example, the reference measure of Example 1(i) is used, and t = 1,
then the measure having density C exp(−α|x |) (with respect to Lebesgue measure)
belongs to the manifold only if |α − 1| < 1/λ0.

The Kaniadakis 1-exponential shares the properties of ψ used in this paper; these
are summarised in Lemma 5, which is easily proved by induction.

Lemma 5 (i) The Kaniadakis 1-exponential ψK : R → (0,∞) is diffeomorphic; in
particular

ψ
(1)
K = 2ψ2

K

1 + ψ2
K

> 0 and ψ
(2)
K = 8ψ3

K(
1 + ψ2

K

)3 > 0, (73)

and so ψK is strictly increasing and convex.
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(ii) For any n ≥ 2,

ψ
(n)
K = Q3(n−2)(ψK )(

1 + ψ2
K

)2(n−1)
ψKψ

(1)
K , (74)

where Q3(n−2) is a polynomial of degree no more than 3(n − 2). In particular,

ψ
(n)
K , ψ(n)

K /ψK and ψ
(n)
K /(ψKψ

(1)
K ) are all bounded.

We can therefore construct a manifold of finite measures MK , as in Sect. 3, sub-
stituting the chart of (21) by φK : MK → G, defined by φK (P) = logK p. The
only properties of ψ used in Sect. 3 are its strict positivity, and the boundedness of
its derivatives, properties shared by ψK . The results in Sect. 4 carry over to MK with
the exception of Proposition 2(iii). Most of these depend only on the boundedness
of the derivatives of ψ ; however, the integration by parts in (53) uses (20), which
can be substituted by (74) in the case of MK . The results of Sect. 5 all carry over
to MK .

MK is a subset of M . Let τ : R → R be the “transition function” τ(z) =
logd ψK (z). All derivatives of τ are bounded, which explains why the regularity of
the KL-divergence on M carries over to MK . Furthermore, it follows from arguments
similar to those used in the proof of Proposition 2 that the superposition operator
Tm : Gm → Gm defined by Tm(a)(x) = τ(a(x)) is continuous for any of the mixed
norm model spaces of Sect. 4.1.

The deformed logarithm of (21) was chosen in [25] because the resulting manifold
is highly inclusive, and suited to the Shannon–Fisher–Rao information geometry. In
this context, it yields the global bound (45). Condition (6) (on the reference measure
μ) has to be considered in the context of (M2), which places upper and lower bounds
on the rate at which the densities of measures in M can decrease as |x | becomes
large. For example, if all nonsingular Gaussian measures are to belong to M , then
(M2) requires r to decay more slowly than a Gaussian density, but more rapidly than
a Cauchy density. Variants of the reference measure μ with t ∈ [1, 2) may be good
choices for such applications.
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