147 research outputs found

    Uncompensated polychromatic analysis of mitochondrial membrane potential using JC-1 and multilaser excitation

    Get PDF
    The lipophilic cation JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-etraethylbenzimidazolyl carbocyanine iodide) has been used for more than 20 years as a specific dye for measuring mitochondrial membrane potential (δψm). In this unit, we revise our original protocol (that made use of a single 488 nm laser for the detection of monomers and aggregates, and where compensation was an important step) to use dual-laser excitation. Moreover, thanks to recently developed multilaser instruments and novel probes for surface and intracellular markers, JC-1 can be utilized by polychromatic flow cytometry to simultaneously detect, without any compensation between fluorescences, δψm along with other biological parameters, such as apoptosis and the production of reactive oxygen species

    Effect of diets supplemented with different conjugated linoleic acid (CLA) isomers on protein expression in C57/BL6 mice

    Get PDF
    The individual genetic variations, as a response to diet, have recently caught the attention of several researchers. In addition, there is also a trend to assume food containing beneficial substances, or to supplement food with specific compounds. Among these, there is the conjugated linoleic acid (CLA), which has been demonstrated to reduce fat mass and to increase lean mass, even though its mechanism of action is still not known. We investigated the effect of CLA isomers (CLA c9,t11 and CLA t10,c12) on the proteomic profile of liver, adipose tissue, and muscle of mouse, with the aim of verifying the presence of a modification in fat and lean mass, and to explore the mechanism of action

    Interfering with ROS metabolism in cancer cells: the potential role of quercetin.

    Get PDF
    Abstract: A main feature of cancer cells, when compared to normal ones, is a persistent pro-oxidative state that leads to an intrinsic oxidative stress. Cancer cells have higher levels of reactive oxygen species (ROS) than normal cells, and ROS are, in turn, responsible for the maintenance of the cancer phenotype. Persistent ROS stress may induce adaptive stress responses, enabling cancer cells to survive with high levels of ROS and maintain cellular viability. However, excessive ROS levels render cancer cells highly susceptible to quercetin, one of the main dietary flavonoids. Quercetin depletes intracellular glutathione and increases intracellular ROS to a level that can cause cell death

    Emerging role of Lon protease as a master regulator of mitochondrial functions

    Get PDF
    Lon protease is a nuclear-encoded, mitochondrial ATP-dependent protease highly conserved throughout the evolution, crucial for the maintenance of mitochondrial homeostasis. Lon acts as a chaperone of misfolded proteins, and is necessary for maintaining mitochondrial DNA. The impairment of these functions has a deep impact on mitochondrial functionality and morphology. An altered expression of Lon leads to a profound reprogramming of cell metabolism, with a switch from respiration to glycolysis, which is often observed in cancer cells. Mutations of Lon, which likely impair its chaperone properties, are at the basis of a genetic inherited disease named of the cerebral, ocular, dental, auricular, skeletal (CODAS) syndrome. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi

    Neural crest derived niche of human dental pulp stem cells promotes peripheral nerve regeneration and remyelination in animal model of critical sized sciatic nerve injury

    Get PDF
    ABSTRACT Peripheral nerve injuries are a commonly encountered clinical problem and often result in long-term functional defects. The use of stem cells, easily accessible, capable of rapid expansion in culture as well as fully integrate into the host tissue and capable to differentiate in myelinating cells of the peripheral nervous system, represent an attractive therapeutic approach for the treatment of nerve injuries. Farther, stem cells sources sharing the same embryological origin of Schwann cells, might be considered a suitable tool. The aim of this study was to demonstrate the ability of a neuroectodermal sub-population of STRO-1+/c-Kit+/CD34+ hDPSCs (1, 2), most of which being positive for neural crest (P75NTR) and neural progenitor cells (nestin) markers, to differentiate into Schwann cells-like cells in vitro and to promote axonal regeneration in vivo. As a matter of fact, following culture in appropriate induction medium, STRO-1+/c-Kit+/CD34+ hDPSCs were able to commit towards Schwann cells express- ing P75NTR, GFAP and S100b. After transplantation in animal model of sciatic nerve defect, hDPSCs promoted axonal regeneration from proximal to distal stumps, providing guidance to newly formed myelinated nerve fibers, which led to functional recovery as measured by sustained gait improvement. Particularly, transplanted hDP- SCs engrafted into critical sized sciatic nerve defect, as revealed by the positive stain- ing against human nuclei, showed the expression of typical Schwann cells markers, S100b and GFAP. In conclusion this study demonstrates that STRO-1+/c-Kit+/CD34+ hDPSCs, associated to neural crest derivation, represent a promising source of stem cells for the treatment of demyelinating disorders and might provide a valid alternative tool for future clinical applications to achieve functional recovery after injury or peripheral neuropathies besides minimizing ethical issues

    Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations

    Get PDF
    Human dental pulp represents a suitable alternative source of stem cells for the purpose of cell-based therapies in regenerative medicine, because it is relatively easy to obtain it, using low invasive procedures. This study characterized and compared two subpopulations of adult stem cells derived from human dental pulp (hDPSCs). Human DPSCs, formerly immune-selected for STRO-1 and c-Kit, were separated for negativity and positivity to CD34 expression respectively, and evaluated for cell proliferation, stemness maintenance, cell senescence and multipotency

    Impaired Mitochondrial Morphology and Functionality in Lonp1wt/- Mice

    Get PDF
    LONP1 is a nuclear-encoded mitochondrial protease crucial for organelle homeostasis; mutations ofLONP1have been associated with Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies (CODAS) syndrome. To clarify the role of LONP1 in vivo, we generated a mouse model in whichLonp1was ablated. The homozygousLonp(-/-)mouse was not vital, while the heterozygousLonp1(wt/-)showed similar growth rate, weight, length, life-span and histologic features as wild type. Conversely, ultrastructural analysis of heterozygous enterocytes evidenced profound morphological alterations of mitochondria, which appeared increased in number, swollen and larger, with a lower complexity. Embryonic fibroblasts (MEFs) fromLonp1(wt/-)mice showed a reduced expression ofLonp1andTfam, whose expression is regulated by LONP1. Mitochondrial DNA was also reduced, and mitochondria were swollen and larger, albeit at a lesser extent than enterocytes, with a perinuclear distribution. From the functional point of view, mitochondria from heterozygous MEF showed a lower oxygen consumption rate in basal conditions, either in the presence of glucose or galactose, and a reduced expression of mitochondrial complexes than wild type. In conclusion, the presence of one functional copy of theLonp1gene leads to impairment of mitochondrial ultrastructure and functions in vivo

    Reliable and Accurate CD4+ T Cell Count and Percent by the Portable Flow Cytometer CyFlow MiniPOC and \u201cCD4 Easy Count Kit-Dry\u201d, as Revealed by the Comparison with the Gold Standard Dual Platform Technology

    Get PDF
    An accurate and affordable CD4+ T cells count is an essential tool in the fight against HIV/AIDS. Flow cytometry (FCM) is the "gold standard" for counting such cells, but this technique is expensive and requires sophisticated equipment, temperature-sensitive monoclonal antibodies (mAbs) and trained personnel. The lack of access to technical support and quality assurance programs thus limits the use of FCM in resource-constrained countries. We have tested the accuracy, the precision and the carry-over contamination of Partec CyFlow MiniPOC, a portable and economically affordable flow cytometer designed for CD4+ count and percentage, used along with the "CD4% Count Kit-Dry"

    Peritoneal dialysis in the time of coronavirus disease 2019

    Get PDF
    In the current setting of global containment, peritoneal dialysis (PD) and home haemodialysis are the best modalities of renal replacement therapy (RRT) to reduce the rate of transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Considering the shorter and easier training programme of PD compared to home haemodialysis, PD appears a practical solution for patients with end-stage renal disease to reduce the risk of hospital-acquired infection. PD offers the advantage of minimizing the risk of viral transmission through interpersonal contact that commonly occurs during the haemodialysis session and while travelling from home to the haemodialysis facility using public transport services. To overcome barriers to health care access due to the containment measures for this emerging disease, telemedicine is a useful and reliable tool for delivering health care without exposing patients to the risk of contact. However, novel issues including handling of potentially infected dialysate, caregivers' infectious risk and adequacy of PD in critically ill patients with acute respiratory distress syndrome remain to be clarified. In conclusion, PD should be preferred to the other modalities of RRT during the coronavirus disease 2019 (COVID-19) outbreak because it can be a solution to cope with the increased number of infected patients worldwide

    Quercetin and Cancer Chemoprevention

    Get PDF
    Several molecules present in the diet, including flavonoids, can inhibit the growth of cancer cells with an ability to act as “chemopreventers”. Their cancer-preventive effects have been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis as well as the antioxidant functions. The antioxidant activity of chemopreventers has recently received a great interest, essentially because oxidative stress participates in the initiation and progression of different pathological conditions, including cancer. Since antioxidants are capable of preventing oxidative damage, the wide use of natural food-derived antioxidants is receiving greater attention as potential anti-carcinogens. Among flavonoids, quercetin (Qu) is considered an excellent free-radical scavenging antioxidant, even if such an activity strongly depends on the intracellular availability of reduced glutathione. Apart from antioxidant activity, Qu also exerts a direct, pro-apoptotic effect in tumor cells, and can indeed block the growth of several human cancer cell lines at different phases of the cell cycle. Both these effects have been documented in a wide variety of cellular models as well as in animal models. The high toxicity exerted by Qu on cancer cells perfectly matches with the almost total absence of any damages for normal, non-transformed cells. In this review we discuss the molecular mechanisms that are based on the biological effects of Qu, and their relevance for human health
    corecore