5,309 research outputs found

    A study into Georgian universities' approach to the national standards of quality for teaching and learning

    Get PDF
    This paper reports on a study conducted in Georgia on the issues of the university sector to implement new strategic principles and standards devised by the National Center for Educational Quality Enhancement (NCEQE) for learning and teaching in higher education. This paper specifically considers the government’s institutional relations concerning the quality of teaching and learning. This is done by borrowing the conceptual framing of the governance relationship of Government and institution provided by Principle Agency (PA) theory. The paper presents the results of the survey and follow-up interviews and concludes that institutions differ in approach, embracing both symbolic compliance and professional pragmatism in regard to the accreditation requirements. A discussion follows, embracing a principle agency interpretation of what the results might mean in practical and policy terms for governance and the development of the sector. It is accepted that learning and teaching is a challenging space for nearly all universities across the world but the Georgia example highlights the dynamics of change within the context of a post-Soviet country and the emerging practical problems this legacy creates. The research identifies some of these tensions between national systems and institutional readiness. The paper closes by offering recommendations for improvement

    Mesoscopic Phase Fluctuations: General Phenomenon in Condensed Matter

    Full text link
    General conditions for the occurrence of mesoscopic phase fluctuations in condensed matter are considered. The description of different thermodynamic phases, which coexist as a mixture of mesoscopically separated regions, is based on the {\it theory of heterophase fluctuations}. The spaces of states, typical of the related phases, are characterized by {\it weighted Hilbert spaces}. Several models illustrate the main features of heterophase condensed matter.Comment: 23 pages, Latex, no figure

    On a conjecture about Dirac's delta representation using q-exponentials

    Full text link
    A new representation of Dirac's delta-distribution, based on the so-called q-exponentials, has been recently conjectured. We prove here that this conjecture is indeed valid

    Optical Bistability in Nonlinear Optical Coupler with Negative Index Channel

    Full text link
    We discuss a novel kind of nonlinear coupler with one channel filled with a negative index material (NIM). The opposite directionality of the phase velocity and the energy flow in the NIM channel facilitates an effective feedback mechanism that leads to optical bistability and gap soliton formation

    Charge Symmetry Violation Effects in Pion Scattering off the Deuteron

    Full text link
    We discuss the theoretical and experimental situations for charge symmetry violation (CSV) effects in the elastic scattering of pi+ and pi- on deuterium (D) and 3He/3H. Accurate comparison of data for both types of targets provides evidence for the presence of CSV effects. While there are indications of a CSV effect in deuterium, it is much more pronounced in the case of 3He/3H. We provide a description of the CSV effect on the deuteron in terms of single- and double- scattering amplitudes. The Delta-mass splitting is taken into account. Theoretical predictions are compared with existing experimental data for pi-d scattering; a future article will speak to the pi-three nucleon case.Comment: 16 pages of RevTeX, 7 postscript figure

    On the formation/dissolution of equilibrium droplets

    Full text link
    We consider liquid-vapor systems in finite volume V⊂RdV\subset\R^d at parameter values corresponding to phase coexistence and study droplet formation due to a fixed excess δN\delta N of particles above the ambient gas density. We identify a dimensionless parameter Δ∼(δN)(d+1)/d/V\Delta\sim(\delta N)^{(d+1)/d}/V and a \textrm{universal} value \Deltac=\Deltac(d), and show that a droplet of the dense phase occurs whenever \Delta>\Deltac, while, for \Delta<\Deltac, the excess is entirely absorbed into the gaseous background. When the droplet first forms, it comprises a non-trivial, \textrm{universal} fraction of excess particles. Similar reasoning applies to generic two-phase systems at phase coexistence including solid/gas--where the ``droplet'' is crystalline--and polymorphic systems. A sketch of a rigorous proof for the 2D Ising lattice gas is presented; generalizations are discussed heuristically.Comment: An announcement of a forthcoming rigorous work on the 2D Ising model; to appear in Europhys. Let

    Geometrothermodynamics

    Get PDF
    We present the fundamentals of geometrothermodynamics, an approach to study the properties of thermodynamic systems in terms of differential geometric concepts. It is based, on the one hand, upon the well-known contact structure of the thermodynamic phase space and, on the other hand, on the metric structure of the space of thermodynamic equilibrium states. In order to make these two structures compatible we introduce a Legendre invariant set of metrics in the phase space, and demand that their pullback generates metrics on the space of equilibrium states. We show that Weinhold's metric, which was introduced {\it ad hoc}, is not contained within this invariant set. We propose alternative metrics which allow us to redefine the concept of thermodynamic length in an invariant manner and to study phase transitions in terms of curvature singularities.Comment: Revised version, to be published in Jour. Math. Phy

    Psychology students’ perception of and engagement with feedback as a function of year of study

    Get PDF
    Undergraduate students’ perception of feedback and level of engagement with the feedback they receive have gained increasing attention in the educational literature recently to identify areas which require educators’ attention. However, research in this area has generally been based on limited self-selecting samples, and has not considered how students’ relationship with feedback may alter depending on their year of study. To address this, a survey measuring students’ views and practices regarding feedback was completed at a higher education institution by 447 first-, second- and third-year psychology students, representing 77% of the cohort. Findings revealed that third years responded more negatively in both areas than their first- and second-year counterparts, whose ratings on these aspects themselves were far from optimal. These findings highlight the need for early interventions to improve students’ perception of and engagement with feedback in the earlier years, and to prevent the recorded deterioration later on in the degree course

    Thinking strategically about assessment

    Get PDF
    Drawing upon the literature on strategy formulation in organisations, this paper argues for a focus on strategy as process. It relates this to the need to think strategically about assessment, a need engendered by resource pressures, developments in learning and the demands of external stakeholders. It is argued that in practice assessment strategies are often formed at the level of practice, but that this produces contradiction and confusion at higher levels. Such tensions cannot be managed away, but they can be reflected on and mitigated. The paper suggests a framework for the construction of assessment strategies at different levels of an institution. However, the main conclusion is that the process of constructing such strategies should be an opportunity for learning and reflection, rather than one of compliance

    Simulation of fluid-solid coexistence in finite volumes: A method to study the properties of wall-attached crystalline nuclei

    Full text link
    The Asakura-Oosawa model for colloid-polymer mixtures is studied by Monte Carlo simulations at densities inside the two-phase coexistence region of fluid and solid. Choosing a geometry where the system is confined between two flat walls, and a wall-colloid potential that leads to incomplete wetting of the crystal at the wall, conditions can be created where a single nanoscopic wall-attached crystalline cluster coexists with fluid in the remainder of the simulation box. Following related ideas that have been useful to study heterogeneous nucleation of liquid droplets at the vapor-liquid coexistence, we estimate the contact angles from observations of the crystalline clusters in thermal equilibrium. We find fair agreement with a prediction based on Young's equation, using estimates of interface and wall tension from the study of flat surfaces. It is shown that the pressure versus density curve of the finite system exhibits a loop, but the pressure maximum signifies the "droplet evaporation-condensation" transition and thus has nothing in common with a van der Waals-like loop. Preparing systems where the packing fraction is deep inside the two-phase coexistence region, the system spontaneously forms a "slab state", with two wall-attached crystalline domains separated by (flat) interfaces from liquid in full equilibrium with the crystal in between; analysis of such states allows a precise estimation of the bulk equilibrium properties at phase coexistence
    • …
    corecore