1,084 research outputs found
Every breath you take:new insights into plant and animal oxygen sensing
Responses to hypoxia are regulated by oxygen-dependent degradation of kingdom-specific proteins in animals and plants. Masson et al. (2019) identified and characterized the mammalian counterpart of an oxygen-sensing pathway previously only observed in plants. Alongside other recent findings identifying novel oxygen sensors, this provides new insights into oxygen-sensing origins and mechanisms in eukaryotes.</p
All-Optical Switching with Transverse Optical Patterns
We demonstrate an all-optical switch that operates at ultra-low-light levels
and exhibits several features necessary for use in optical switching networks.
An input switching beam, wavelength , with an energy density of
photons per optical cross section [] changes
the orientation of a two-spot pattern generated via parametric instability in
warm rubidium vapor. The instability is induced with less than 1 mW of total
pump power and generates several Ws of output light. The switch is
cascadable: the device output is capable of driving multiple inputs, and
exhibits transistor-like signal-level restoration with both saturated and
intermediate response regimes. Additionally, the system requires an input power
proportional to the inverse of the response time, which suggests thermal
dissipation does not necessarily limit the practicality of optical logic
devices
N-term 2017: Proteostasis via the N-terminus
N-term 2017 was the first international meeting to bring together researchers from diverse disciplines with a shared interest in protein N-terminal modifications and the N-end rule pathway of ubiquitin-mediated proteolysis, providing a platform for interdisciplinary cross-kingdom discussions and collaborations, as well as strengthening the visibility of this growing scientific community
Comparative Biology of Oxygen Sensing in Plants and Animals
© 2020 Elsevier Inc. Aerobic respiration is essential to almost all eukaryotes and sensing oxygen is a key determinant of survival. Analogous but mechanistically different oxygen-sensing pathways were adopted in plants and metazoan animals, and include ubiquitin-mediated degradation of transcription factors and direct sensing via non-heme iron(Fe2+)-dependent-dioxygenases. Key roles for oxygen sensing have been identified in both groups, with downstream signalling focussed on regulating gene transcription and chromatin modification to control development and stress responses. Components of sensing systems are promising targets for human therapeutic intervention and developing stress-resilient crops. Here, we review current knowledge about the origins, commonalities and differences between oxygen sensing in plants and animals. Holdsworth and Gibbs review the comparative evolution and functions of oxygen-sensing in plants and animals, pathways that are analogous but mechanistically distinct, with essential roles in regulating gene expression and physiology
Airfields of the Commonwealth: Catalogue of Sites
This dataset was created as part of Daniel J. Leahy's 2018 Bachelor of Arts with Honours project investigating the archaeology of airfields utilised by schools of the Empire Air Training Scheme during the Second World War. Sites include those in Australia, Canada, New Zealand, Zimbabwe (formerly Southern Rhodesia) and South Africa. Similar sites utilised by the British Flying Training Schools in the United States have also been included.
Each site is recorded by its latitude, longitude, and UTM coordinates in the standard of the World Geodetic System 1984 (WGS-84). A raw text (CSV) file has been included as well as a PDF document of how this data was formatted to appear as Appendix A in Leahy's 2018 Honours thesis
Altered collective mitochondrial dynamics in the Arabidopsis \u3ci\u3emsh1\u3c/i\u3e mutant compromising organelle DNA maintenance
Mitochondria form highly dynamic populations in the cells of plants (and almost all eukaryotes). The characteristics and benefits of this collective behaviour, and how it is influenced by nuclear features, remain to be fully elucidated. Here, we use a recently developed quantitative approach to reveal and analyse the physical and collective ‘social’ dynamics of mitochondria in an Arabidopsis msh1 mutant where the organelle DNA maintenance machinery is compromised. We use a newly created line combining the msh1 mutant with mitochondrially targeted green fluorescent protein (GFP), and characterize mitochondrial dynamics with a combination of single-cell time-lapse microscopy, computational tracking, and network analysis. The collective physical behaviour of msh1 mitochondria is altered from that of the wild type in several ways: mitochondria become less evenly spread, and networks of inter-mitochondrial encounters become more connected, with greater potential efficiency for inter-organelle exchange—reflecting a potential compensatory mechanism for the genetic challenge to the mitochondrial DNA population, supporting more inter-organelle exchange. We find that these changes are similar to those observed in friendly, where mitochondrial dynamics are altered by a physical perturbation, suggesting that this shift to higher connectivity may reflect a general response to mitochondrial challenges, where physical dynamics of mitochondria may be altered to control the genetic structure of the mtDNA population
Method and system for entering data within a flight plan entry field
The present invention provides systems, apparatus and methods for entering data into a flight plan entry field which facilitates the display and editing of aircraft flight-plan data. In one embodiment, the present invention provides a method for entering multiple waypoint and procedure identifiers at once within a single a flight plan entry field. In another embodiment, the present invention provides for the partial entry of any waypoint or procedure identifiers, and thereafter relating the identifiers with an aircraft's flight management system to anticipate the complete text entry for display. In yet another embodiment, the present invention discloses a method to automatically provide the aircraft operator with selectable prioritized arrival and approach routing identifiers by a single manual selection. In another embodiment, the present invention is a method for providing the aircraft operator with selectable alternate patterns to a new runway
Radiotherapy for Soft Tissue Sarcoma of the Proximal Lower Extremity
Soft-tissue sarcoma (STS) is a histopathologically diverse group of tumors accounting for approximately 10,000 new malignancies in the US each year. The proximal lower extremity is the most common site for STS, accounting for approximately one-third of all cases. Coordinated multimodality management in the form of surgery and radiation is often critical to local control, limb preservation, and functional outcome. Based on a review of currently available Medline literature and professional experience, this paper provides an overview of the treatment of STS of the lower extremity with a particular focus on the modern role of radiotherapy
Methods and apparatus for graphical display and editing of flight plans
Systems and methods are provided for an integrated graphical user interface which facilitates the display and editing of aircraft flight-plan data. A user (e.g., a pilot) located within the aircraft provides input to a processor through a cursor control device and receives visual feedback via a display produced by a monitor. The display includes various graphical elements associated with the lateral position, vertical position, flight-plan and/or other indicia of the aircraft's operational state as determined from avionics data and/or various data sources. Through use of the cursor control device, the user may modify the flight-plan and/or other such indicia graphically in accordance with feedback provided by the display. In one embodiment, the display includes a lateral view, a vertical profile view, and a hot-map view configured to simplify the display and editing of the aircraft's flight-plan data
Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber
Action potential duration (APD) restitution, which relates APD to the
preceding diastolic interval (DI), is a useful tool for predicting the onset of
abnormal cardiac rhythms. However, it is known that different pacing protocols
lead to different APD restitution curves (RCs). This phenomenon, known as APD
rate-dependence, is a consequence of memory in the tissue. In addition to APD
restitution, conduction velocity restitution also plays an important role in
the spatiotemporal dynamics of cardiac tissue. We present new results
concerning rate-dependent restitution in the velocity of propagating action
potentials in a one-dimensional fiber. Our numerical simulations show that,
independent of the amount of memory in the tissue, waveback velocity exhibits
pronounced rate-dependence and the wavefront velocity does not. Moreover, the
discrepancy between waveback velocity RCs is most significant for small DI. We
provide an analytical explanation of these results, using a system of coupled
maps to relate the wavefront and waveback velocities. Our calculations show
that waveback velocity rate-dependence is due to APD restitution, not memory.Comment: 17 pages, 7 figure
- …