12,236 research outputs found

    Vacuum decay via Lorentzian wormholes

    Full text link
    We speculate about the spacetime description due to the presence of Lorentzian wormholes (handles in spacetime joining two distant regions or other universes) in quantum gravity. The semiclassical rate of production of these Lorentzian wormholes in Reissner-Nordstr\"om spacetimes is calculated as a result of the spontaneous decay of vacuum due to a real tunneling configuration. In the magnetic case it only depends on the field theoretical fine structure constant. We predict that the quantum probability corresponding to the nucleation of such geodesically complete spacetimes should be actually negligible in our physical Universe

    Bohm and Einstein-Sasaki Metrics, Black Holes and Cosmological Event Horizons

    Get PDF
    We study physical applications of the Bohm metrics, which are infinite sequences of inhomogeneous Einstein metrics on spheres and products of spheres of dimension 5 <= d <= 9. We prove that all the Bohm metrics on S^3 x S^2 and S^3 x S^3 have negative eigenvalue modes of the Lichnerowicz operator and by numerical methods we establish that Bohm metrics on S^5 have negative eigenvalues too. We argue that all the Bohm metrics will have negative modes. These results imply that higher-dimensional black-hole spacetimes where the Bohm metric replaces the usual round sphere metric are classically unstable. We also show that the stability criterion for Freund-Rubin solutions is the same as for black-hole stability, and hence such solutions using Bohm metrics will also be unstable. We consider possible endpoints of the instabilities, and show that all Einstein-Sasaki manifolds give stable solutions. We show how Wick rotation of Bohm metrics gives spacetimes that provide counterexamples to a strict form of the Cosmic Baldness conjecture, but they are still consistent with the intuition behind the cosmic No-Hair conjectures. We show how the Lorentzian metrics may be created ``from nothing'' in a no-boundary setting. We argue that Lorentzian Bohm metrics are unstable to decay to de Sitter spacetime. We also argue that noncompact versions of the Bohm metrics have infinitely many negative Lichernowicz modes, and we conjecture a general relation between Lichnerowicz eigenvalues and non-uniqueness of the Dirichlet problem for Einstein's equations.Comment: 53 pages, 11 figure

    Isometric Embedding of BPS Branes in Flat Spaces with Two Times

    Get PDF
    We show how non-near horizon p-brane theories can be obtained from two embedding constraints in a flat higher dimensional space with 2 time directions. In particular this includes the construction of D3 branes from a flat 12-dimensional action, and M2 and M5 branes from 13 dimensions. The worldvolume actions are determined by constant forms in the higher dimension, reduced to the usual expressions by Lagrange multipliers. The formulation affords insight in the global aspects of the spacetime geometries and makes contact with recent work on two-time physics.Comment: 29 pages, 10 figures, Latex using epsf.sty and here.sty; v2: reference added and some small correction

    Integrable Cosmological Models From Higher Dimensional Einstein Equations

    Get PDF
    We consider the cosmological models for the higher dimensional spacetime which includes the curvatures of our space as well as the curvatures of the internal space. We find that the condition for the integrability of the cosmological equations is that the total space-time dimensions are D=10 or D=11 which is exactly the conditions for superstrings or M-theory. We obtain analytic solutions with generic initial conditions in the four dimensional Einstein frame and study the accelerating universe when both our space and the internal space have negative curvatures.Comment: 10 pages, 2 figures, added reference, corrected typos(v2), explanation improved and references and acknowledgments added, accepted for publication in PRD(v3

    Generalized Killing equations and Taub-NUT spinning space

    Full text link
    The generalized Killing equations for the configuration space of spinning particles (spinning space) are analysed. Simple solutions of the homogeneous part of these equations are expressed in terms of Killing-Yano tensors. The general results are applied to the case of the four-dimensional euclidean Taub-NUT manifold.Comment: 10 pages, late

    Cloudlet-based just-in-time indexing of IoT video

    Get PDF
    P

    Evolution of a Self-interacting Scalar Field in the spacetime of a Higher Dimensional Black Hole

    Full text link
    In the spacetime of n-dimensional static charged black hole we examine the mechanism by which the self-interacting scalar hair decay. It is turned out that the intermediate asymptotic behaviour of the self-interacting scalar field is determined by an oscilatory inverse power law. We confirm our results by numerical calculations.Comment: RevTex, 6 pages, 8 figures, to be published in Phys.Rev.D1

    The Cardy-Verlinde formula and entropy of Topological Reissner-Nordstr\"om black holes in de Sitter spaces

    Get PDF
    In this paper we discuss the question of whether the entropy of cosmological horizon in Topological Reissner-Nordstr\"om- de Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any dimension. Furthermore, we find that the entropy of black hole horizon can also be rewritten in terms of the Cardy-Verlinde formula for these black holes in de Sitter spaces, if we use the definition due to Abbott and Deser for conserved charges in asymptotically de Sitter spaces. Our result is in favour of the dS/CFT correspondence.Comment: 6 pages, accepted for publication in IJMP
    • 

    corecore