1,296 research outputs found

    Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics

    Get PDF
    We show that under variation of moduli fields ϕ\phi the first law of black hole thermodynamics becomes dM=κdA8π+ΩdJ+ψdq+χdp−ΣdϕdM = {\kappa dA\over 8\pi} + \Omega dJ + \psi dq + \chi dp - \Sigma d\phi, where Σ\Sigma are the scalar charges. We also show that the ADM mass is extremized at fixed AA, JJ, (p,q)(p,q) when the moduli fields take the fixed value ϕfix(p,q)\phi_{\rm fix}(p,q) which depend only on electric and magnetic charges. It follows that the least mass of any black hole with fixed conserved electric and magnetic charges is given by the mass of the double-extreme black hole with these charges. Our work allows us to interpret the previously established result that for all extreme black holes the moduli fields at the horizon take a value ϕ=ϕfix(p,q)\phi= \phi_{\rm fix}(p,q) depending only on the electric and magnetic conserved charges: ϕfix(p,q) \phi_{\rm fix}(p,q) is such that the scalar charges Σ(ϕfix,(p,q))=0\Sigma ( \phi_{\rm fix}, (p,q))=0.Comment: 3 pages, no figures, more detailed versio

    Enhancement of Supersymmetry Near 5d Black Hole Horizon

    Get PDF
    Geometric Killing spinors which exist on AdS_{p+2} X S^{d-p-2} sometimes may be identified with supersymmetric Killing spinors. This explains the enhancement of unbroken supersymmetry near the p-brane horizon in d dimensions. The corresponding p-brane interpolates between two maximally supersymmetric vacua, at infinity and at the horizon. New case is studied here: p=0, d=5. The details of supersymmetric version of the very special geometry are presented. We find the area-entropy formula of the supersymmetric 5d black holes via the volume of S^3 which depends on charges and intersection matrix

    The Decay of Magnetic Fields in Kaluza-Klein Theory

    Get PDF
    Magnetic fields in five-dimensional Kaluza-Klein theory compactified on a circle correspond to ``twisted'' identifications of five dimensional Minkowski space. We show that a five dimensional generalisation of the Kerr solution can be analytically continued to construct an instanton that gives rise to two possible decay modes of a magnetic field. One decay mode is the generalisation of the ``bubble decay" of the Kaluza-Klein vacuum described by Witten. The other decay mode, rarer for weak fields, corresponds in four dimensions to the creation of monopole-anti-monopole pairs. An instanton for the latter process is already known and is given by the analytic continuation of the \KK\ Ernst metric, which we show is identical to the five dimensional Kerr solution. We use this fact to illuminate further properties of the decay process. It appears that fundamental fermions can eliminate the bubble decay of the magnetic field, while allowing the pair production of Kaluza-Klein monopoles.Comment: 25 pages, one figure. The discussion of fermions has been revised: We show how fundamental fermions can eliminate the bubble-type instability but still allow pair creation of monopole

    Vacuum Polarization of STU Black Holes and their Subtracted Geometry Limit

    Get PDF
    We study the vacuum polarization of a massless minimally coupled scalar field at the horizon of four-charge STU black holes. We compare the results for the standard asymptotically flat black holes and for the black holes obtained in the "subtracted limit", both in the general static case and at the horizon pole for the general rotating case. The original and the subtracted results are identical only in the BPS limit, and have opposite sign in the extremal Kerr limit. We also compute the vacuum polarization on the static solutions that interpolate between both the original and the subtracted case through a solution-generating transformation and show that the vacuum polarization stays positive throughout the interpolating solution. In the Appendix we provide a closed-form solution for the Green's function on general (static or rotating) subtracted black hole geometries.Comment: 22 pages, 2 figure

    Exact Black String Solutions in Three Dimensions

    Full text link
    A family of exact conformal field theories is constructed which describe charged black strings in three dimensions. Unlike previous charged black hole or extended black hole solutions in string theory, the low energy spacetime metric has a regular inner horizon (in addition to the event horizon) and a timelike singularity. As the charge to mass ratio approaches unity, the event horizon remains but the singularity disappears.Comment: 17 page

    Isometric Embedding of BPS Branes in Flat Spaces with Two Times

    Get PDF
    We show how non-near horizon p-brane theories can be obtained from two embedding constraints in a flat higher dimensional space with 2 time directions. In particular this includes the construction of D3 branes from a flat 12-dimensional action, and M2 and M5 branes from 13 dimensions. The worldvolume actions are determined by constant forms in the higher dimension, reduced to the usual expressions by Lagrange multipliers. The formulation affords insight in the global aspects of the spacetime geometries and makes contact with recent work on two-time physics.Comment: 29 pages, 10 figures, Latex using epsf.sty and here.sty; v2: reference added and some small correction

    Convex Functions and Spacetime Geometry

    Full text link
    Convexity and convex functions play an important role in theoretical physics. To initiate a study of the possible uses of convex functions in General Relativity, we discuss the consequences of a spacetime (M,gμν)(M,g_{\mu \nu}) or an initial data set (Σ,hij,Kij)(\Sigma, h_{ij}, K_{ij}) admitting a suitably defined convex function. We show how the existence of a convex function on a spacetime places restrictions on the properties of the spacetime geometry.Comment: 26 pages, latex, 7 figures, improved version. some claims removed, references adde
    • …
    corecore