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1 Introduction

Black Holes emit radiation and lose mass [1]. This apparent violation of the Hawking

area theorem can be explained by concluding that the energy flux out of the black hole

is accompanied by an energy flux into the black hole across its horizon. This can happen

because the polarization of the vacuum under the influence of the gravitational field can

increase or decrease the local energy density of the zero-point fluctuations. The expectation

value of the scalar field 〈ϕ2〉, also called the vacuum polarization of the field, encodes much

of the information on these quantum fluctuations. Computations of 〈ϕ2〉 are a valuable tool

in quantum field theory in curved spacetime, not only on their own regard as a measure

of field fluctuations, but also as a tool for studying symmetry breaking effects and as a

preliminary step in investigations of the stress-energy tensor and the Casimir effect.

Candelas studied the effect of vacuum polarization on a scalar field in the Schwarzschild

black hole background [2] and was able to calculate an analytical expression for 〈ϕ2〉 at

the horizon. Candelas’ methods extend easily to charged static black holes, but the case

of the rotating black hole is much more challenging; Frolov [3] was able to calculate the

analytical expression for 〈ϕ2〉 only at the pole of the event horizon. There have also been

numerical investigations of 〈ϕ2〉 on general static black hole backgrounds beyond the event

horizon (e.g. [4] for asymptotically flat solutions and [5] for the asymptotically anti-de

Sitter case), and analytical computations at the horizon of a black hole threaded with a

cosmic string [6].

In this work we will focus on the vacuum polarization of the massless minimally coupled

scalar field for subtracted geometry black hole backgrounds. Subtracted geometry black
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holes are solutions of the bosonic sector of N=2 STU supergravity coupled to three vector

multiplets. They are obtained when one subtracts certain terms from the warp factor of

the general black holes [7–9]. This subtraction procedure when applied to the “original”

N=2 STU black holes [10] modifies their “warp factor” in such a way that wave equation

becomes separable. The metric, however, remains a solution of the STU equations of

motion. The subtracted metric can also be obtained from the original one through a scaling

limit [11], or through a continuously interpolating procedure using a solution-generating

transformation [12–16]. The subtracted geometry is asymptotically conical instead of being

asymptotically flat. The subtracted black holes also display a Lifhshitz-like symmetry at

the boundary and may be interpreted as being confined in an asymptotically conical box.

The modified black holes have the same horizon area and periodicity of the angular

and time co-ordinates as the original black holes. The subtracted black hole geometry is

a good approximation to the original one from the horizon to within the radius of the

circular photon orbits of the original black holes. Quantum effects on curved spacetime,

nevertheless, are often sensitive to non-local aspects of the geometry, and thus it is worth

investigating whether the vacuum polarization at the horizon in the subtracted black holes

is similar to the original values, or significantly different from them. Differences in quantum

effects between original and subtracted black holes were already found in [17] for the horizon

entanglement entropy at the subleading order.

This paper is organized as follows: in section 2 we will introduce our notation for

describing both the original black holes and their subtracted counterparts. In section 3 we

will calculate the analytical expressions for 〈ϕ2〉 for subtracted geometry black holes and

compare it to the previously known value of the original black holes. In the static case

we will calculate the vacuum expectation value at the horizon; for the rotating case we

will calculate the value only at the pole of the horizon. Here we will also show that the

values of 〈ϕ2〉 in the original and subtracted geometries are related by the scaling limit

mentioned above. We will also dedicate special discussion to the case of extremal black

holes, showing that the original and subtracted results coincide for extremal static black

holes (BPS limit) but not for extremal rotating black holes. In section 4 we will calculate

the vacuum expectation value for the interpolating solution from the original black hole to

the subtracted limit obtained through the solution-generating transformations. Section 5

contains the summary and discussion. In appendix A we give the full expression for the

Green’s functions of the subtracted geometry black holes valid outside the horizon, which

may be useful in later studies of, e.g., the vacuum stress-energy tensor and the self force

problem. In appendix B we provide the vacuum polarization at the horizon pole for a

rotating, non-subtracted STU black hole with four charges.

Throughout this paper we use units with c = ~ = GN = 1.

2 Black hole subtracted geometry

The general four-dimensional axisymmetric black hole metric is given by

ds2 = −∆−1/2G (dt+Adφ)2 + ∆1/2

(
dr2

X
+ dθ2 +

X

G
sin2 θ dφ2

)
. (2.1)

– 2 –



J
H
E
P
0
1
(
2
0
1
5
)
1
3
0

Here the quantities X,G,A,∆ are all functions of r and sin θ only (and depend on the

mass, rotation and charge parameters). The first three are the same for the original and the

corresponding subtracted black hole, while the difference in ∆ is the hallmark of subtracted

geometry. (The function ∆(r, θ) is called the warp factor of the black hole geometry.) The

physical parameters (mass M , angular momentum J and charges QI) of the general four-

charge black hole are parametrized in terms of auxiliary constants m, a, δI as:

M =
1

4
m

3∑
I=0

cosh 2δI ,

QI =
1

4
m sinh 2δI , (I = 0, 1, 2, 3) ,

J = ma (Πc −Πs) , (2.2)

where we employ the abbreviations

Πc ≡
3∏
I=0

cosh δI , Πs ≡
3∏
I=0

sinh δI . (2.3)

The functions X,G,A are given by:

X = r2 − 2mr + a2 ,

G = r2 − 2mr + a2 cos2 θ ,

A =
2ma sin2 θ

G
[(Πc −Πs)r + 2mΠs] . (2.4)

For the original black hole solutions, the remaining function ∆ = ∆0 is given by:

∆0 =
4∏
I=0

(
r + 2m sinh2 δI

)
+ 2a2 cos2 θ

[
r2 +mr

3∑
I=0

sinh2 δI + 4m2(Πc −Πs)Πs

−2m2
∑

I<J<K

sinh2 δI sinh2 δJ sinh2 δK

]
+ a4 cos4 θ . (2.5)

The particular case of δI = δ for all I recovers the usual Kerr-Newman black hole in a

different parametrization. The matter sources for these black holes solutions are given

in [10, 18].1

The subtracted geometry is defined by the replacement of the function ∆0 by ∆sub [9],

given by:

∆sub = (2m)3r
(
Π2
c −Π2

s

)
+ (2m)4Π2

s − (2m)2(Πc −Πs)
2a2 cos2 θ . (2.6)

The different scaling of ∆ at r → ∞ (namely, the dominant terms being ∼ r instead

of ∼ r4) is what makes the subtracted geometry asymptotically Lifhshitz-like instead of

asymptotically flat.

1The full solution with four electric charges and four magnetic charges is given in [19]. A subtracted

version of this geometry was constructed in [20].
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The subtracted metric is a solution of the bosonic sector four-dimensional N = 2

supergravity coupled to three vector supermultiplets. We will not require for our current

purposes the detailed form of matter fields supporting the geometry, which are given in [8].

In [11] it was shown that one can obtain the subtracted geometry through a scaling limit,

making in the original black hole metric the redefinitions

r → rε , t→ tε−1 , m→ mε , a→ aε ,

sinh2 δ0 →
Π2
s

Π2
c −Π2

s

, sinh2 δI → ε−4/3
(
Π2
c −Π2

s

)1/3
, (2.7)

and taking the ε→ 0 limit.

In both the original and the subtracted case the horizons, specified by X = 0, are at:

r± = m±
√
m2 − a2 . (2.8)

The inverse surface gravity at each horizon is given by:

1

κ±
= 2m

[
m√

m2 − a2
(Πc + Πs)± (Πc −Πs)

]
. (2.9)

The temperature in the Hartle-Hawking state is given by T = (2π)−1κ, where κ ≡ κ+.

We also define the angular velocities:

Ω± = κ±
a√

m2 − a2
. (2.10)

The subtracted versions of the Kerr-Newman, Kerr, Reissner-Nordström, and Schwarzschild

black holes are obtained, respectively, by setting all δI = δ, setting all δI = 0, setting all

δI = δ and a = 0 , and setting all δI = a = 0. Though the horizon surface gravity and

area of each subtracted black hole match the corresponding original (=non-subtracted)

ones, other properties of the geometry are different. In particular, due to the nontrivial

supporting matter fields, the Ricci tensor does not vanish for any of the black holes under

consideration, and the Ricci scalar vanishes at the horizon, but not at an arbitrary point.

3 Vacuum polarization at the black hole event horizon

3.1 Green’s function and counterterms

There are no existing analytic tools for computing the vacuum polarization on the entire

horizon of rotating black holes. Therefore we will restrict our attention to the general static

case, and to 〈ϕ2〉 at the pole (θ = 0) of the horizon of rotating black holes. The vacuum

polarization for the original Schwarzschild and (at the pole) Kerr-Newman black holes have

been computed in [2, 3] . We will add to these pre-existing computations the original four-

charge black hole, and compare all the results with the corresponding subtracted cases. All

our calculations will assume a massless, minimally coupled scalar field.

The algorithm for computing the vacuum polarization 〈ϕ2〉 of a scalar field in a thermal

state on a curved background is simple in principle, and is composed of two steps. The first
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one is to compute the Euclidean Green’s function G(x, x′), by solving the wave equation

on the Wick-rotated Euclidean manifold with the time periodicity corresponding to the

temperature of the field. The second one is to take the coincidence limit of the Green

function, regularizing the UV divergences by subtracting appropriate counterterms which

depend on the geodesic distance s(x, x′). In our case we will always implement radial

separation, setting t = t′, ϕ = ϕ′, θ = θ′ (= 0 in the rotating case) and r = r+, r
′ = r+ + ε.

The wave equation for the Euclidean Green’s function, after Wick rotating t→ −iτ , is:

� GH(−iτ, x, θ, φ ;−iτ ′, x′, θ′, φ′) = −i 1

(r+ − r−)

1√
−g

δ(τ − τ ′)δ(x− x′)δ(Ω,Ω′) , (3.1)

where x =
(
r − 1

2(r+ + r−)
)
/(r+ − r−) is a convenient rescaled radial variable, and g is

the determinant of the original metric (2.1). For subtracted geometry, the solution in the

general rotating case is expanded as:

GH(−iτ, x, θ, φ ;−iτ ′, x′, θ′, φ′) =
1

r+ − r−
iκ

2π

∞∑
n=−∞

einκ(τ−τ ′)
∞∑
l=0

(2l + 1)

4π
(3.2)

×
l∑

m=−l

(l−m)!

(l+m)!
eim(φ−φ′)Pml (cos θ)Pml (cos θ′)Gmln(x, x′) .

In the original case the expansion involves Lamé functions instead of the Legendre functions

Pml . In the general static case we may, by symmetry, omit the sum over the magnetic quan-

tum number m (not to be confused with the black hole mass parameter) and write directly:

GH(−iτ, x, θ, φ ;−iτ ′, x′, θ′, φ′)=
1

2m

iκ

2π

∞∑
n=−∞

einκ(τ−τ ′)
∞∑
l=0

(2l+1)

4π
Pl(cos Θ)Gln(x, x′) ,

(3.3)

where Θ is the angle between the two points. Expansion (3.3) is valid in the general static

case (both original and subtracted).

The radial wave equation that Gmln(x, x′) or Gln(x, x′) satisfy is not solvable in closed

form for the original black holes. For subtracted black holes there exist closed-form solu-

tions in terms of hypergeometric functions, which we provide in the appendix. It turns

out that if one point is at the horizon both Gln(x, x′) and Gln0(x, x′) vanish except when

n = 0. Moreover, in the rotating case when we evaluate (3.2) at the pole of the horizon

(θ = θ′ = 0), we see that the Legendre functions will vanish except for m = 0. Thus we

conclude that in the static and the rotating case we only need Gl0(x, x′) and G0l0(x, x′)

respectively. These are the same in all cases:

Gl0(x, x′) = G0l0(x, x′) = 2
[
Pl(2x)Ql(2x

′)H(x′ − x) + Pl(2x
′)Ql(2x)H(x− x′)

]
. (3.4)

Here Pl, Ql are the Legendre polynomials and the Legendre functions of the second kinds

respectively, and H is the Heaviside step function. The external horizon r = r+ is at

x = 1/2. It follows that in the general static case we have:

G(−iτ, r+, θ, φ;−iτ ′, r+ + ε, θ, φ) =
iκ

2π

1

4πm

∞∑
l=0

(2l + 1)Ql

(
m+ ε

m

)
, (3.5)
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and in the rotating case we have:

GH(−iτ, r+, 0, φ ;−iτ ′, r+ + ε, 0, φ) =
iκ

2π

1

2πr0

∞∑
l=0

(2l + 1)Ql

(
2ε+ r0

r0

)
, (3.6)

where r0 = r+ − r− = 2
√
m2 − a2; the latter expression clearly reduces to the former one

for a = 0. The sums are evaluated using the Heine Identity [21]:

∞∑
l=0

(2l + 1)Pl(Ψ)Ql(ζ) =
1

(ζ −Ψ)
. (3.7)

Therefore in the general static case we have:

G(−iτ, r+, θ, φ;−iτ, r+ + ε, θ, φ) =
iκ

8π2 ε
, (3.8)

and the same expression holds for θ = 0 in the general rotating case. Thus the results

of Candelas and Frolov [2, 3] for the Green function on Schwarzschild and Kerr-Newman

generalize to black holes with four charges and with or without subtracted geometry.

The vacuum polarization is given by the limit:

〈ϕ2〉r+ = lim
ε→0+

[
−iG(t, r+, θ, φ; t, r+ + ε, θ, φ)− 1

8π2σ
− 1

96π2

Rab σ
,aσ,b

σ

]
= lim

ε→0+

[
κ

8π2 ε
− 1

8π2σ
− 1

96π2

Rab σ
,aσ,b

σ

]
, (3.9)

where σ = 1
2s

2(r+, r+ + ε) is half of the geodesic distance squared between the points

(t, r+, θ, φ) and (t, r+ + ε, θ, φ) (with θ = 0 in the rotating case). The two counterterms are

the non-vanishing parts of the Hadamard expansion of the Green’s function [22].

It is seen that even though the Green’s function term for subtracted black holes matches

the non-subtracted one, the vacuum polarizations in both cases will not coincide. This is be-

cause the counterterms that need to be subtracted from −iG have nontrivial dependence on

the warp factor at the subleading order that survives the cancelation of divergences. For ex-

ample, the second counterterm vanishes in vacuum solutions like the original Schwarzschild

and Kerr black holes, yet it does not vanish for any of the subtracted black holes.

The sum of the two counterterms in (3.9) must be computed up to order O(1) in an

expansion in powers of ε. To achieve this, we write the geodesic distance as:

s(r+, r+ + ε) =

∫ r++ε

r+

dr (grr)
1/2 =

∫ r++ε

r+

dr
∆1/4(r)

X1/2(r)
. (3.10)

In the rotating case, the integral is computed by evaluating the metric function ∆ at

arbitrary θ setting θ = 0 at the end of the calculation. Even though the integral cannot

in general be computed in closed form, it is possible to expand the integrand in order to

compute σ accurately to the required order in ε.

Once we have obtained σ(ε), we can easily compute the second counterterm

Rabσ
,aσ,bσ−1 by using the fact that for radial separation, both in the static case and

at the pole in the rotating case, σ,r is the only nonvanishing component of σ,a and we have

σ =
grr
2

(σ,r)2 . (3.11)
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The preceding collection of formulas make straightforward the computation of 〈ϕ2〉r+
in the general case. The result may be succinctly expressed as:

〈ϕ2〉r+ =
1

48π2
(K0 +Rrr) . (3.12)

Here K0 is the intrinsic curvature of the horizon (its Gaussian curvature as a two-

dimensional surface, evaluated at the pole in the rotating case). The first term of (3.12) was

derived originally by Frolov [23] based on an earlier approximation scheme by Page [24].

A covariant form of this expression is:

〈ϕ2〉r+ =
1

48π2

(
K0 +

1

2

[
Rab σ

,aσ,b

σ

])
, (3.13)

where the square brackets denote the coincidence limit.2

We give below the results first for each of the non-subtracted black holes, and then for

their subtracted counterparts.

3.2 Results for original black holes

The vacuum polarization at the horizon for the general static four-charge original black

hole is:

〈ϕ2〉4Qorig
r+ =

∑
I sech2 δI

768m2π2Πc
. (3.14)

This result is novel, and reduces when δI = δ and when δI = 0 to the previously

known results for the vacuum polarization on the Reissner-Nordström and Schwarzschild

black holes [2, 3]:

〈ϕ2〉RNorig
r+ =

1

192m2π2 cosh6 δ
, (3.15)

〈ϕ2〉Schorig
r+ =

1

192m2π2
. (3.16)

The result at the pole of the general four-charge rotating black hole is readily obtainable

as well. Because of its great length, we have included it in appendix B. In the limit δI = δ,

it reduces to the Kerr-Newman result first derived in [3]:

〈ϕ2〉KNorig

r+, θ=0 =
m2 − 2a2 +m

√
m2 − a2 cosh 2δ

6m2π2
(

4
√
m2 − a2 cosh 2δ +m(3 + cosh 4δ)

)2 . (3.17)

To verify the equality of this result with that of [3] one must bear in mind that in

our notation the standard mass and charge parameters become M = m cosh(2δ) and

Q = m sinh(2δ).

2Note that the Rab term appears with the opposite sign here than in (3.9); this is because the finite part

of the σ−1 counterterm provides not only K0 but also an additional contribution proportional to Rrr.

– 7 –



J
H
E
P
0
1
(
2
0
1
5
)
1
3
0

3.3 Results for subtracted black holes

The vacuum polarization at the horizon for the general static four-charge subtracted black

hole is:

〈ϕ2〉4Qsub
r+ =

Π2
c −Π2

s

768π2m2Π3
c

. (3.18)

In the particular cases of subtracted Reissner-Nordström and subtracted Schwarzschild

we obtain:

〈ϕ2〉RNsub
r+ =

1− tanh8 δ

768π2m2 cosh4 δ
, (3.19)

〈ϕ2〉Schsub
r+ =

1

768π2m2
. (3.20)

Comparing with the corresponding results for non-subtracted black holes, we see that

all the results for the horizon vacuum polarization on the static subtracted geometries

differ from their original counterparts. However, the difference is quantitative and not

qualitative. The sign of the result, and the general way it behaves as a function of the

parameters, is generally unchanged.

The vacuum polarization at the pole of the fully general four-charge rotating subtracted

black hole is relatively simpler than its corresponding non-subtracted expression given in

appendix B. It reads:

〈ϕ2〉gensub
r+, θ=0 =

Πc −Πs

192mπ2 [m (2m (Π2
c + Π2

s) + r0 (Π2
c −Π2

s))− a2(Πc −Πs)2]5/2
×[

ma2(Πc −Πs)
(
r0

(
Π2
c −Π2

s

)
− 8mΠc Πs

)
+ 2m3(Πc + Πs)

(
2m
(
Π2
c −Π2

s

)
+ r0

(
Π2
c + Π2

s

))
− 2a4(Πc −Πs)

3
]
, (3.21)

where as before we use the notation r0 = 2
√
m2 − a2. In the Kerr-Newman limit δI = δ

we obtain:

〈ϕ2〉KNsub
r+, θ=0 = (3.22)(
c4−s4

)4 (
a2m

(
c8r0−8c4s4m−s8r0

)
−2a4

)
+2m3

(
c8−s8

) (
c8(r0+2m)+s8(ro−2m)

)
192mπ2

[
m(r0+2m)c8+m(2m−r0)s8−a2 (c4−s4)2

]5/2
,

where for compactness we write c, s for cosh δ and sinh δ. These results reduce to the above

formulas for static black holes when a = 0. In this case, the subtracted expression turns

out to be significantly less simple than Frolov’s original result (3.17). It also presents the

qualitative difference of being positive for all values of the parameters, whereas the original

result can be vanishing or negative.

To conclude this section, we remark that there exists an alternative derivation of the

vacuum polarization for subtracted black holes. Instead of redoing the calculation in (3.9)

for the new geometries, we can apply the scaling limit (4.4) directly to the original black

hole results of section 3.1. We have confirmed that performing this transformation on

〈ϕ2〉orig
r+ in fact results in the expressions we gave in this section for 〈ϕ2〉sub

r+ .
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Figure 1. Vacuum polarization at the horizon original Reissner-Nordström black hole (full line)

and subtracted Reissner-Nordströmr (dashed line). In the extremal limit both results coincide

and vanish.

3.4 Extremal black holes

There is a limit in which the subtracted geometry and the original geometry coincide. This

is the so-called BPS limit, which consists in rescaling the parameters m, a, δI as follows:

m→ mε , (3.23)

a→ aε , (3.24)

e2δI → 1

ε
e2δI , (3.25)

and taking the limit ε→ 0. It is easily seen that this limit results in J = 0, M =
∑

I QI ,

r+ = r−, and κ = 0. Therefore the BPS limit describes an extremal static four-charge

black hole.

When taking this limit directly on both our original and our subtracted results, we

obtain, as expected, the same limiting value:

〈ϕ2〉BPS
r+ → 0 . (3.26)

The way the zero result in the extremal limit is achieved in the original black hole and

the subtracted one, for the Reissner-Nordström case of all δI = δ, is plotted in figure 1 as

a function of the ratio of physical charge (Q = m sinh δ) to physical mass (M = m cosh δ).

We remark in passing that the BPS limit does not make each term of the

expression (3.12) vanish separately; rather, in the BPS limit both terms are finite and

of opposite value:

K0 =
1

4M2
= −Rrr (BPS limit) . (3.27)
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It is tempting to interpret the vanishing of the vacuum polarization in the BPS limit

as related to the zero temperature of the extremal black hole and as evidence of the in-

trinsically thermal nature of the field fluctuations. However, this interpretation fails to

account for the fact that for extremal rotating black holes the vacuum polarization does

not vanish. Setting m = a results also in an extremal black hole with zero temperature, as

can be seen from (2.8) and (2.9), both for original and subtracted black holes and for any

value of δI . Looking for simplicity just at the pure Kerr case δI = 0, the original vacuum

polarization at the pole in this limit is given by

〈ϕ2〉Kerrext
r+, θ=0 = − 1

96π2m2
, (3.28)

and the corresponding subtracted value is given by

〈ϕ2〉Kerrext−sub

r+ θ=0 =
1

96π2m2
, (3.29)

that is, exactly opposite in sign. We do not have an explanation for this fact, which could

be a mere numerical coincidence.

The values of 〈ϕ2〉r+, θ=0 for both kinds of Kerr black holes are not so simply related in

the non-extremal case; the original one exhibits a zero value for a/m =
√

3/2 (as first noted

by Frolov [3]) while the subtracted one never vanishes. As a function of the dimensionless

variable y = a/m, these results read:

〈ϕ2〉Kerrorig

r+, θ=0 = − 1

96π2m2

3− 2y2 − 3
√

1− y2

y2
, (3.30)

〈ϕ2〉Kerrsub
r+ θ=0 =

1

96π2m2

2− y2 +
(
2 + y2

)√
1− y2[

2− y2 + 2
√

1− y2
]5/2

. (3.31)

These results are contrasted in figure 2. The change in sign of 〈ϕ2〉Kerrorig

r+, θ=0 tracks directly

the change of sign of the intrinsic curvature K0 of the near-extremal Kerr event horizon

that was first indicated by Smarr [25]. This is because for the original Kerr black hole

the second term of (3.12) vanishes. In the subtracted geometry case, both terms of (3.12)

contribute and the result is always positive.

4 Vacuum polarization for interpolating static black holes

In this section we will use an interpolating member of the four-charge family of static black

hole solutions to find a formula for the vacuum polarization that interpolates between the

original black hole value, its subtracted geometry value, and its value in the BPS limit

(which, as we have seen, is zero).

Stationary solutions of the STU supergravity theory are acted on by the group O(4, 4).

In particular, the original (asymptotically flat) black holes may all be obtained by acting

with a O(1, 1)4 subset of solution-generating transformations acting on a neutral stationary

black hole. These transformations are parametrized by four boosts δI and one may obtain

asymptotically flat BPS solutions in the limit δI →∞.

– 10 –



J
H
E
P
0
1
(
2
0
1
5
)
1
3
0

0.2 0.4 0.6 0.8 1.0

a m

-1.0

-0.5

0.5

1.0

96π2 m2 φ2

Figure 2. Vacuum polarization at the horizon pole for the original Kerr (full line) and subtracted

Kerr (dashed line). In the extremal limit the results are equal in magnitude and opposite in sign.

In [14], it was shown that acting on any of the original black holes with a different

O(1, 1)4 ⊂ O(4, 4), parametrized by four αI with 0 < αI < 1, one obtains again all the

asymptotically flat original black holes. However, if any any of the αI parameters equals

unity, we obtain further solutions which are not asymptotically flat. In particular, the

subtracted geometries studied in these paper are obtained by setting all but one αI equal

to unity. If all αI are set to unity, one obtains a Robertson-Bertotti-type solution, which

coincide with the near-horizon geometries of the asymptotically flat BPS black holes.

We shall restrict ourselves in this paper to α-transformations acting within the sub-

family of static black holes, because in this case the transformation linking an original

black hole to its subtracted counterpart preserves the mass and charge parameter values

along its orbit,

The αI transformation only affects the warp factor ∆ in the black hole metric. The

warp factor for a static black hole with mass m and charges δI , as a function of the αI
parameters, is given by

∆int =
4∏

J=0

[(
1− α2

J

)
r + 2m(αJ cosh δJ + sinh δJ)2

]
(4.1)

≡
∏
J

[aJr + 2mbJ ] , (4.2)

where we define aJ = 1− α2
J , bJ = (αJ cosh δJ + sinh δJ)2.

The static black hole subtracted geometry is obtained by setting:

αi = 1 , α0 = α∗0 ≡
Πs cosh δ0 −Πc sinh δ0

Πc cosh δ0 −Πs sinh δ0
, (4.3)

and doing in addition a rescaling of the metric given by:

gµν → e−2c0gµν , e−2c0 =
Πc cosh δ0 −Πs sinh δ0

eδ1+δ2+δ3
. (4.4)
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The vacuum polarization of the interpolating four charge black holes is computed

straightforwardly as before from (3.9) by computing the geodesic distance, its derivative and

the Ricci tensor of the interpolating metrics. The result is written in general in the form:

〈ϕ2〉4Qint
r+ =

4 a1a2a3a4 + 3(a1a2a3b4 + . . .) + 2(a1a2b3b4 + . . .) + 1(a1b2b3b4 + . . .)

768π2m2
∏
J(aJ + bJ)3/2

, (4.5)

where the dots indicate all the inequivalent terms obtained by permuting indices. It is

easily checked that the above expression reduces to the original result in the correct limit,

〈ϕ2〉4Qint
r+ = 〈ϕ2〉4Qorig

r+ (αJ = 0) , (4.6)

where the original result was given in (3.14). Since each aJ vanishes when αJ = 1, the

BPS limit correctly obtains the vanishing result we discussed above:

〈ϕ2〉4Qint
r+ = 〈ϕ2〉BPS

r+ = 0 (αJ = 1). (4.7)

The value of 〈ϕ2〉4Qr+ in the subtracted geometry can be found by setting the α-parameters to

the values (4.3), and then performing a rescaling corresponding to (4.4) on the result, giving:

〈ϕ2〉4Qsub
r+ = 〈ϕ2〉4Qint

r+

∣∣∣
αi=1, α0=α∗0

× e2c0 . (4.8)

It is verified that this expression agrees with (3.18).

The results become particularly simple for the Schwarzschild interpolating black hole:

〈ϕ2〉Schint
r+ =

4− α2
0 − α2

1 − α2
2 − α2

3

768π2m2
. (4.9)

In this case the subtracted limit has α∗0 = 0, and also c0 = 0 (no rescaling). Thus we verify:

〈ϕ2〉Schint
r+ = 〈ϕ2〉Schorig

r+ (αJ = 0) , (4.10)

= 〈ϕ2〉Schsub
r+ (αi = 1, α0 = 0) , (4.11)

= 0 (αJ = 1) . (4.12)

5 Conclusions

In this paper we have investigated the vacuum polarization 〈ϕ2〉 for a wide class of black

holes that are solutions of the bosonic sector of N=2 STU supergravity coupled to three

vector multiplets. These black holes are characterized by a mass parameter m, a rotation

parameter a, and four charge parameters δI . We have focused our attention on two general

subclasses: the original black holes, which are asymptotically flat (and include the usual

black holes of the Kerr-Newman family, in the limit where all charges coincide), and the

subtracted black holes, which modify the warp factor of the metric (changing it from (2.5)

to (2.6)) and are asymptotically Lifhshitz. The subtracted geometry is of special interest

because it makes the wave equation separable in addition to providing a good approxima-

tion to the original geometry in the near-horizon regime.
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We have computed the vacuum polarization of a massless, minimally coupled scalar

field at the horizon (for static black holes) and at the pole of the horizon (for rotating

black holes). The calculation was outlined in section 3.1, using results for the Green’s

function that are derived in appendix A. The results for original black holes are presented

in section 3.2, and their subtracted counterparts in section 3.3 and appendix B. For each

type of black hole (as characterized by its mass, rotation and charge parameters) the

Green’s function at the horizon is independent of the warp factor but the counterterms

are not, leading to differing results for the vacuum polarization. In each case, the vacuum

polarization is captured by the formula

〈ϕ2〉r+ =
1

48π2
(K0 +Rrr) , (5.1)

which expresses it in terms of the horizon intrinsic curvature and the Ricci tensor (evaluated

at the horizon, or at the horizon pole for rotating black holes).

For static black holes, the results are qualitatively similar in the subtracted and original

cases. For rotating black holes, we noted that a sign change which was observed by Frolov [3]

to occur in the original black holes at high values of a is absent in the subtracted black

holes, for which 〈ϕ2〉 is always positive. We also confirmed that the subtracted vacuum

polarization can be obtained from the original one through a simple scaling limit, and that

both results coincide (and vanish) in the BPS limit characterizing static extremal black

holes. In section 4 we computed the horizon vacuum polarization for static black hole

solutions that interpolate between the original and the subtracted geometry, according to

the solution-generating transformations labelled by αI .

Our methods potentially be extended to compute vacuum polarization of the analogues

of subtracted geometry that were constructed in [20] for the Chow-Compère solution [19].

The expressions we provide in appendix A for the full Green’s function on subtracted

backgrounds, where it can be computed in closed form, are a promising starting point for

further investigations of quantum effects on the subtracted black holes and their comparison

with the original ones. Among possible avenues for further research are computations of

the stress-energy tensor, numerical investigations of 〈ϕ2〉 beyond the horizon, extensions

to other fields beyond the minimally coupled massless scalar, and investigations of the

self-force problem.
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A Green’s function for subtracted geometry black holes

In this appendix we describe the computation of the Euclidean Green’s function for sub-

tracted black holes. The equation to solve is:

� GH(−iτ, x, θ, φ ;−iτ ′, x′, θ′, φ′) = −i 1

(r+ − r−)

1√
−g

δ(τ − τ ′)δ(x− x′)δ(Ω,Ω′) , (A.1)
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where g is the determinant of the metric (2.1), and

x =
r − 1

2(r+ + r−)

r+ − r−
. (A.2)

δ(Ω,Ω′) is the delta function on the two-sphere and can be expanded in terms of the

Legendre polynomials as

δ(Ω,Ω′) =
∑
l

(2l + 1)

4π
Pl(cos Θ) , (A.3)

where Θ is the angle between Ω and Ω′. Likewise the temporal delta function may be

expanded:

δ(τ − τ ′) =
κ

2π

∞∑
n=−∞

einκ(τ−τ ′) , (A.4)

where κ = κ+, since the Euclidean Green’s function must have the periodicity given by the

external horizon’s surface gravity.

In the static case, where r+ − r− = 2m, the Green’s function may be expanded in the

following form:

GH(−iτ, x, θ, φ ;−iτ ′, x′, θ′, φ′) =
1

2m

iκ

2π

∞∑
n=−∞

einκ(τ−τ ′)
∑
l

(2l + 1)

4π
Pl(cos Θ)Gln(x, x′) .

(A.5)

Substituting this into (A.1) gives us the following equation for the radial Green’s

function Gln:[
∂

∂x

(
x2− 1

4

)
∂

∂x
− n2

4
(
x− 1

2

)+
1

4
(
x+ 1

2

) (nκ
κ−

)2

−l(l+1)

]
Gln(x, x′) = −δ(x−x′) . (A.6)

The solution to this equation is constructed from two independent solutions of the corre-

sponding homogeneous equation:[
∂

∂x

(
x2 − 1

4

)
∂

∂x
− n2

4
(
x− 1

2

) +
1

4
(
x+ 1

2

) (nκ
κ−

)2

− l(l + 1)

]
χln(x) = 0 . (A.7)

The solutions to this equation have been derived in [26, 27] and are expressed in terms

of hypergeometric functions F (a, b, c; z). One has two independent solutions χ
(1)
ln , χ

(2)
ln , of

which the first one is regular at the horizon (x = 1
2) and the second one is regular at infinity

(x→ +∞). These solutions are

χ
(1)
ln =

(
x+

1

2

)−(l+1)
(
x− 1

2

x+ 1
2

)n
2

F

(
aln, bln, 1 + n;

x− 1
2

x+ 1
2

)
,

χ
(2)
ln =

(
x+

1

2

)−(l+1)
(
x− 1

2

x+ 1
2

)n
2

F

(
aln, bln, , 2l + 2;

1

x+ 1
2

)
, (A.8)
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with

aln = l + 1 +
n

2

(
1 +

κ

κ−

)
,

bln = l + 1 +
n

2

(
1− κ

κ−

)
. (A.9)

The formula for Green’s function is simply

Gln(x, x′) =
Γ (aln) Γ (bln)

(2l + 1)!n!

[
χ

(1)
ln (x′)χ

(2)
ln (x)H(x−x′)+χ

(1)
ln (x)χ

(2)
ln (x′)H(x′−x)

]
, (A.10)

where H(x) is the Heaviside step function. The prefactor is obtained from the Wronskian

of the two solutions: (
x′2 − 1

4

)
W

(χ
(1)
ln ,χ

(2)
lm)

(x′) = − (2l + 1)!n!

Γ (aln) Γ (bln)
. (A.11)

The solutions for n = 0 are written more simply in terms of Legendre functions:

χ
(1)
l0 (x) = Pl(2x) ,

χ
(2)
l0 (x) =

(2l + 1)!

2(l!)2
Ql(2x) . (A.12)

Thus the radial Green function for n = 0 is given simply by

Gl0(x, x′) = G0l0(x, x′) = 2
[
Pl(2x)Ql(2x

′)H(x′ − x) + Pl(2x
′)Ql(2x)H(x− x′)

]
, (A.13)

as we claimed in section 3.

In the rotational case the ansatz expression for the Green’s function is3

GH(−iτ, x, θ, φ ;−iτ ′, x′, θ′, φ′) =
1

r0

iκ

2π

∞∑
n=−∞

einκ(τ−τ ′)
∞∑
l=0

(2l + 1)

4π
(A.14)

×
l∑

m=−l

(l−m)!

(l+m)!
eim(φ−φ′)Pml (cos θ)Pml (cos θ′)Gmln(x, x′),

where r0 = r+ − r−. Upon substitution in (A.1), we use the delta function expansion

δ(Ω,Ω′) =
∞∑
l=0

(2l + 1)

4π

l∑
m=−l

(l −m)!

(l +m)!
eim(φ−φ′)Pml (cos θ)Pml (cos θ′) , (A.15)

and obtain the following radial equation to solve[
∂

∂x

(
x2 − 1

4

)
∂

∂x
− 1

4
(
x− 1

2

) (n− mΩ+

κ

)2

+
1

4
(
x+ 1

2

) (nκ−mΩ−
κ−

)2

− l(l + 1)

]
Gmln(x, x′) = −δ(x− x′) . (A.16)

3In this expression and throughout the rest of appendix A, m will always stand for the index labeling

φ-dependent modes and not for the black hole mass parameter.
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Now we proceed as before and solve the homogeneous equation first. The equation is of the

same essential form as the static one (A.7), so the solutions will take the same form. We

must be careful, however, to write the solutions in terms of the absolute values of the com-

binations of parameters that appear squared in the equation. The solutions are written as:

χ
(1)
mln(x) =

(
x+

1

2

)−(l+1)
(
x− 1

2

x+ 1
2

) 1
2

∣∣∣n−mΩ+
κ

∣∣∣
F

(
amln, bmln, 1 +

∣∣∣∣n− mΩ+

κ

∣∣∣∣ ; x− 1
2

x+ 1
2

)
,

χ
(2)
mln(x) =

(
x+

1

2

)−(l+1)
(
x− 1

2

x+ 1
2

) 1
2

∣∣∣n−mΩ+
κ

∣∣∣
F

(
amln, bmln, 2l + 2;

1

x+ 1
2

)
, (A.17)

where

amln = l + 1 +
1

2

∣∣∣∣n− mΩ+

κ

∣∣∣∣+
1

2

∣∣∣∣nκ−mΩ−
κ−

∣∣∣∣ ,
bmln = l + 1 +

1

2

∣∣∣∣n− mΩ+

κ

∣∣∣∣− 1

2

∣∣∣∣nκ−mΩ−
κ−

∣∣∣∣ . (A.18)

The full radial Green’s function is then:

Gmln(x, x′) =
Γ(amln)Γ(bmln)

(2l + 1)!Γ
(

1 +
∣∣∣n− mΩ+

κ

∣∣∣)
×
[
χ

(1)
mln(x′)χ

(2)
mln(x)H(x′ − x) + χ

(1)
mln(x)χ

(2)
mln(x′)H(x− x′)

]
. (A.19)

It is easily verified that in the static case Gln(1
2 , x
′) = 0, and in the rotating case,

G0l0(1
2 , x
′) = 0, unless n = 0. This justifies our claim earlier in the paper that only the

terms Gl0(x, x′) and G0l0(x, x′) are relevant for our purposes.

B Vacuum polarization for the original four-charge rotating black hole

In this appendix we present the general result for the vacuum polarization at the horizon

pole (r = r+, θ = 0) of the non-subtracted rotating black hole with four distinct charges.

We use the following notation to make the result more compact:

d1 = 2
∑
I

sinh2 δI , (B.1)

d2 = 4
∑
I<J

sinh2 δI sinh2 δJ , (B.2)

d3 = 8
∑

I<J<K

sinh2 δI sinh2 δJ sinh2 δK , (B.3)

d4 = 8 ΠcΠs − 4
∏

I<J<K

sinh δI sinh δJ sinh δK , (B.4)

d5 = (4Πs)
2 , (B.5)

and in addition we write as before r0 = 2
√
m2 − a2. The full result can be written as:

〈ϕ2〉genorig

r+, θ=0 =
A

48π2m2r0C3/2
+

B

192π2C5/2
, (B.6)
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where:

A = 4(4+d1)
(
m2−a2

)2−mr0

(
a2(12+4d1+d2+d4)+m2(−8−2d1+d3+d5)

)
, (B.7)

B = −2ma2
[
12d2

1 + 6d2
2 + d3(16 + d3 − 2d4)− 2d5(d4 − 4) + 2d2(12 + 3d3 − d4 + d5)

+ 2d1(12 + 9d2 + 5d3 − d4 + 2d5)
]
− a2r0 (2d1 + 2d2 + d3) (4 + 2d1 + d2 − d4)

+ 2m3
[
16d2

1 + 8d2
2 + 3d3(8 + d3) + 4d5(4 + d3) + 2d2

5 + 2d2(16 + 5d3 + 3d5)

+ 2d1(16 + 12d2 + 8d3 + 5d5)
]

+m2r0

[
12d2

1 + 8d2
2 + 16d5 + 3d3(8 + d3 + d5)

+ 2d2(16 + 5d3 + 3d5) + 2d1(16 + 12d2 + 8d3 + 5d5)
]
, (B.8)

C = m2(8+4d1+2d2+d3+d5)−a2(4+2d1+d2−d4)+mr0

(
4+2d1+d2+

1

2
d3

)
. (B.9)
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