1,981 research outputs found

    Cosmic Acceleration from M Theory on Twisted Spaces

    Get PDF
    In a recent paper [I.P. Neupane and D.L. Wiltshire, Phys. Lett. B 619, 201 (2005).] we have found a new class of accelerating cosmologies arising from a time--dependent compactification of classical supergravity on product spaces that include one or more geometric twists along with non-trivial curved internal spaces. With such effects, a scalar potential can have a local minimum with positive vacuum energy. The existence of such a minimum generically predicts a period of accelerated expansion in the four-dimensional Einstein-conformal frame. Here we extend our knowledge of these cosmological solutions by presenting new examples and discuss the properties of the solutions in a more general setting. We also relate the known (asymptotic) solutions for multi-scalar fields with exponential potentials to the accelerating solutions arising from simple (or twisted) product spaces for internal manifolds.Comment: 23 pages, 3 figures; added a summary Table, PRD versio

    Particle Production and Positive Energy Theorems for Charged Black Holes in deSitter

    Full text link
    We study quantum mechanical and classical stability properties of Reissner-Nordstrom deSitter spacetimes, which describe black holes with mass MM and charge QQ in a background with cosmological constant Λ≄0\Lambda \ge 0. There are two sources of particle production in these spacetimes; the black hole horizon and the cosmological horizon. A scattering calculation is done to compute the Hawking radiation in these spacetimes. We find that the flux from the black hole horizon equals the flux from the cosmological horizon, if and only if ∣Q∣=M|Q|=M, indicating that this is a state of thermodynamic equilibrium. The spectrum, however, is not thermal. We also show that spacetimes containing a number of charge equal to mass black holes with Λ≄0\Lambda \ge 0, have supercovariantly constant spinors, suggesting that they may be minimum energy states in a positive energy construction. As a first step in this direction, we present a positive energy construction for asymptotically deSitter spacetimes with vanishing charge. Because the construction depends only on a spatial slice, our result also holds for spacetimes which are asymptotically Robertson-Walker.Comment: 11 pages (1 figure not included), UMHEP-39

    Komar Integrals in Higher (and Lower) Derivative Gravity

    Get PDF
    The Komar integral relation of Einstein gravity is generalized to Lovelock theories of gravity. This includes, in particular, a new boundary integral for the Komar mass in Einstein gravity with a nonzero cosmological constant, which has a finite result for asymptotically AdS black holes, without the need for an infinite background subtraction. Explicit computations of the Komar mass are given for black holes in pure Lovelock gravities of all orders and in general Gauss-Bonnet theories.Comment: 16 pages; v2 - references and comment on relation to Noether charge method adde

    Generalized entropy and Noether charge

    Get PDF
    We find an expression for the generalized gravitational entropy of Hawking in terms of Noether charge. As an example, the entropy of the Taub-Bolt spacetime is calculated.Comment: 6 pages, revtex, reference correcte

    Single-charge rotating black holes in four-dimensional gauged supergravity

    Full text link
    We consider four-dimensional U(1)^4 gauged supergravity, and obtain asymptotically AdS_4, non-extremal, charged, rotating black holes with one non-zero U(1) charge. The thermodynamic quantities are computed. We obtain a generalization that includes a NUT parameter. The general solution has a discrete symmetry involving inversion of the rotation parameter, and has a string frame metric that admits a rank-2 Killing-Stackel tensor.Comment: 9 page

    Zero Modes for the D=11 Membrane and Five-Brane

    Get PDF
    There exist extremal p-brane solutions of D ⁣= ⁣11D\!=\!11 supergravity for p=2~and~5. In this paper we investigate the zero modes of the membrane and the five-brane solutions as a first step toward understanding the full quantum theory of these objects. It is found that both solutions possess the correct number of normalizable zero modes dictated by supersymmetry.Comment: Minor typos corrected, one reference added, agrees with published version. 9 RevTeX pages, 1 figure include

    Cosmological Multi-Black Hole Solutions

    Get PDF
    We present simple, analytic solutions to the Einstein-Maxwell equation, which describe an arbitrary number of charged black holes in a spacetime with positive cosmological constant Λ\Lambda. In the limit Λ=0\Lambda=0, these solutions reduce to the well known Majumdar-Papapetrou (MP) solutions. Like the MP solutions, each black hole in a Λ>0\Lambda >0 solution has charge QQ equal to its mass MM, up to a possible overall sign. Unlike the Λ=0\Lambda = 0 limit, however, solutions with Λ>0\Lambda >0 are highly dynamical. The black holes move with respect to one another, following natural trajectories in the background deSitter spacetime. Black holes moving apart eventually go out of causal contact. Black holes on approaching trajectories ultimately merge. To our knowledge, these solutions give the first analytic description of coalescing black holes. Likewise, the thermodynamics of the Λ>0\Lambda >0 solutions is quite interesting. Taken individually, a ∣Q∣=M|Q|=M black hole is in thermal equilibrium with the background deSitter Hawking radiation. With more than one black hole, because the solutions are not static, no global equilibrium temperature can be defined. In appropriate limits, however, when the black holes are either close together or far apart, approximate equilibrium states are established.Comment: 15 pages (phyzzx), UMHEP-380 (minor referencing error corrected

    Dynamics of the DBI Spike Soliton

    Get PDF
    We compare oscillations of a fundamental string ending on a D3-brane in two different settings: (1) a test-string radially threading the horizon of an extremal black D3-brane and (2) the spike soliton of the DBI effective action for a D3-brane. Previous work has shown that overall transverse modes of the test-string appear as l=0 modes of the transverse scalar fields of the DBI system. We identify DBI world-volume degrees of freedom that have dynamics matching those of the test-string relative transverse modes. We show that there is a map, resembling T-duality, between relative and overall transverse modes for the test-string that interchanges Neumann and Dirichlet boundary conditions and implies equality of the absorption coefficients for both modes. We give general solutions to the overall and relative transverse parts of the DBI coupled gauge and scalar system and calculate absorption coefficients for the higher angular momentum modes in the low frequency limit. We find that there is a nonzero amplitude for l>0 modes to travel out to infinity along the spike, demonstrating that the spike remains effectively 3+1-dimensional.Comment: 15 pages, 1 figur

    Kinematic dynamo action in a sphere. I. Effects of differential rotation and meridional circulation on solutions with axial dipole symmetry

    Get PDF
    A sphere containing electrically conducting fluid can generate a magnetic field by dynamo action, provided the flow is sufficiently complicated and vigorous. The dynamo mechanism is thought to sustain magnetic fields in planets and stars. The kinematic dynamo problem tests steady flows for magnetic instability, but rather few dynamos have been found so far because of severe numerical difficulties. Dynamo action might, therefore, be quite unusual, at least for large-scale steady flows. We address this question by testing a two-parameter class of flows for dynamo generation of magnetic fields containing an axial dipole. The class of flows includes two completely different types of known dynamos, one dominated by differential rotation (D) and one with none. We find that 36% of the flows in seven distinct zones in parameter space act as dynamos, while the remaining 64% either fail to generate this type of magnetic field or generate fields that are too small in scale to be resolved by our numerical method. The two previously known dynamo types lie in the same zone, and it is therefore possible to change the flow continuously from one to the other without losing dynamo action. Differential rotation is found to promote large-scale axisymmetric toroidal magnetic fields, while meridional circulation (M) promotes large-scale axisymmetric poloidal fields concentrated at high latitudes near the axis. Magnetic fields resembling that of the Earth are generated by D > 0, corresponding to westward flow at the surface, and M of either sign but not zero. Very few oscillatory solutions are found

    Pair Creation of Dilaton Black Holes

    Get PDF
    We consider dilaton gravity theories in four spacetime dimensions parametrised by a constant aa, which controls the dilaton coupling, and construct new exact solutions. We first generalise the C-metric of Einstein-Maxwell theory (a=0a=0) to solutions corresponding to oppositely charged dilaton black holes undergoing uniform acceleration for general aa. We next develop a solution generating technique which allows us to ``embed" the dilaton C-metrics in magnetic dilaton Melvin backgrounds, thus generalising the Ernst metric of Einstein-Maxwell theory. By adjusting the parameters appropriately, it is possible to eliminate the nodal singularities of the dilaton C-metrics. For a<1a<1 (but not for a≄1a\ge 1), it is possible to further restrict the parameters so that the dilaton Ernst solutions have a smooth euclidean section with topology S2×S2−{pt}S^2\times S^2-{\rm\{pt\}}, corresponding to instantons describing the pair production of dilaton black holes in a magnetic field. A different restriction on the parameters leads to smooth instantons for all values of aa with topology S2×R2S^2\times \R^2.Comment: 22 pages, EFI-93-51, FERMILAB-Pub-93/272-A, UMHEP-393. (Asymptotics of Ernst solutions clarified, typos repaired
    • 

    corecore