162 research outputs found

    Familial adenomatous patients with desmoid tumours show increased expression of miR-34a in serum and high levels in tumours

    No full text
    Familial adenomatous polyposis (FAP) is rare affecting 1 in 10,000 people and a subset (10%) are at risk of myofibroblastic desmoid tumours (DTs) after colectomy to prevent cancer. DTs are a major cause of morbidity and mortality. The absence of markers to monitor progression and a lack of treatment options are significant limitations to clinical management. We investigated microRNAs (miRNA) levels in DTs and serum using expression array analysis on two independent cohorts of FAP patients (total, n=24). Each comprised equal numbers of patients who had formed DTs (cases) and those who had not (controls). All controls had absence of DTs confirmed by clinical and radiological assessment over at least three years post- colectomy. Technical qPCR validation was performed using an expanded cohort (29 FAP patients; 16 cases and 13 controls). The most significant elevated serum miRNA marker of DTs was miR-34a-5p and in-situ hybridisation (ISH) showed most DTs analysed (5/6) expressed miRNA-34a-5p. Exome sequencing of tumour and matched germline DNA did not detect mutations within the miR-34a-5p transcript sites or 3'-UTR of target genes that would alter functional miRNA activity. In conclusion, miR-34a-5p is a potential circulatory marker and therapy target. A large prospective world-wide multi-centre study is now warranted

    Whole-genome sequencing of spermatocytic tumors provides insights into the mutational processes operating in the male germline

    Get PDF
    Adult male germline stem cells (spermatogonia) proliferate by mitosis and, after puberty, generate spermatocytes that undertake meiosis to produce haploid spermatozoa. Germ cells are under evolutionary constraint to curtail mutations and maintain genome integrity. Despite constant turnover, spermatogonia very rarely form tumors, so-called spermatocytic tumors (SpT). In line with the previous identification of FGFR3 and HRAS selfish mutations in a subset of cases, candidate gene screening of 29 SpTs identified an oncogenic NRAS mutation in two cases. To gain insights in the etiology of SpT and into properties of the male germline, we performed whole-genome sequencing of five tumors (4/5 with matched normal tissue). The acquired single nucleotide variant load was extremely low (~0.2 per Mb), with an average of 6 (2±9) no

    Maternal iron deficiency perturbs embryonic cardiovascular development in mice.

    Get PDF
    Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women

    Epigenetic and metabolic reprogramming of fibroblasts in Crohn's disease strictures reveals histone deacetylases as therapeutic targets.

    Get PDF
    BACKGROUND & AIMS: No effective therapeutic intervention exists for intestinal fibrosis in Crohn's disease [CD]. We characterised fibroblast subtypes, epigenetic and metabolic changes, and signalling pathways in CD fibrosis to inform future therapeutic strategies. METHODS: We undertook immunohistochemistry, metabolic, signalling pathway and Epigenetic [Transposase-Accessible Chromatin using sequencing] analyses associated with collagen production in CCD-18Co intestinal fibroblasts and primary fibroblasts isolated from stricturing [SCD] and non-stricturing [NSCD] CD small intestine. SCD/ NSCD fibroblasts were cultured with TGFβ and valproic acid [VPA]. RESULTS: Stricturing CD was characterised by distinct histone deacetylase [HDAC] expression profiles, particularly HDAC1, HDAC2, and HDAC7. As a proxy for HDAC activity, reduced numbers of H3K27ac+ cells were found in SCD compared to NSCD sections. Primary fibroblasts had increased extracellular lactate [increased glycolytic activity] and intracellular hydroxyproline [increased collagen production] in SCD compared to NSCD cultures. The metabolic effect of TGFβ-stimulation was reversed by the HDAC inhibitor VPA. SCD fibroblasts appear "metabolically primed" and responded more strongly to both TGFβ and VPA. Treatment with VPA revealed TGFβ-dependent and independent Collagen-I production in CCD-18Co cells and primary fibroblasts. VPA altered the epigenetic landscape with reduced chromatin accessibility at the COL1A1 and COL1A2 promoters. CONCLUSIONS: Increased HDAC expression profiles, H3K27ac hypoacetylation, a significant glycolytic phenotype, and metabolic priming, characterise SCD-derived as compared to NSCD fibroblasts. Our results reveal a novel epigenetic component to Collagen-I regulation and TGFβ-mediated CD fibrosis. HDAC inhibitor therapy may 'reset' the epigenetic changes associated with fibrosis

    Separation of Dual Oxidase 2 and Lactoperoxidase Expression in Intestinal Crypts and Species Differences May Limit Hydrogen Peroxide Scavenging During Mucosal Healing in Mice and Humans.

    Get PDF
    Background: DUOX2 and DUOXA2 form the predominant H2O2-producing system in human colorectal mucosa. Inflammation, hypoxia, and 5-aminosalicylic acid increase H2O2 production, supporting innate defense and mucosal healing. Thiocyanate reacts with H2O2 in the presence of lactoperoxidase (LPO) to form hypothiocyanate (OSCN-), which acts as a biocide and H2O2 scavenging system to reduce damage during inflammation. We aimed to discover the organization of Duox2, Duoxa2, and Lpo expression in colonic crypts of Lieberkühn (intestinal glands) of mice and how distributions respond to dextran sodium sulfate (DSS)-induced colitis and subsequent mucosal regeneration. Methods: We studied tissue from DSS-exposed mice and human biopsies using in situ hybridization, reverse transcription quantitative polymerase chain reaction, and cDNA microarray analysis. Results: Duox2 mRNA expression was mostly in the upper crypt quintile while Duoxa2 was more apically focused. Most Lpo mRNA was in the basal quintile, where stem cells reside. Duox2 and Duoxa2 mRNA were increased during the induction and resolution of DSS colitis, while Lpo expression did not increase during the acute phase. Patterns of Lpo expression differed from Duox2 in normal, inflamed, and regenerative mouse crypts (P < 0.001). We found no evidence of LPO expression in the human gut. Conclusions: The spatial and temporal separation of H2O2-consuming and -producing enzymes enables a thiocyanate- H2O2 "scavenging" system in murine intestinal crypts to protect the stem/proliferative zones from DNA damage, while still supporting higher H2O2 concentrations apically to aid mucosal healing. The absence of LPO expression in the human gut suggests an alternative mechanism or less protection from DNA damage during H2O2-driven mucosal healing.R.P. was funded by the Monument Trust. M.P.C. was funded by the CARIPLO Foundation (project 2010-0790) and the Italian Ministry of Health. A.R. was supported by an annual fellowship from Fondazione Umberto Veronesi

    The miR-200 family is increased in dysplastic lesions in ulcerative colitis patients

    Get PDF
    This work was supported by the Broad Medical Research Program of the Broad Foundation [http://www.ccfa.org/science-and-professionals/broad/] (grant no IBD-0289R to Professor Silver and Dr James Lindsay) and Barts and The London Charity [https://bartscharity.org.uk] (grant no MGD0016 to Noor Jawad)

    Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes

    Get PDF
    Mosaic mutations present in the germline have important implications for reproductive risk and disease transmission. We previously demonstrated a phenomenon occurring in the male germline, whereby specific mutations arising spontaneously in stem cells (spermatogonia) lead to clonal expansion, resulting in elevated mutation levels in sperm over time. This process, termed selfish spermatogonial selection, explains the high spontaneous birth prevalence and strong paternal age-effect of disorders such as achondroplasia, Apert, Noonan and Costello syndromes, with direct experimental evidence currently available for specific positions of six genes (FGFR2, FGFR3, RET, PTPN11, HRAS and KRAS). We present a discovery screen to identify novel mutations and genes showing evidence of positive selection in the male germline, by performing massively parallel simplex PCR using RainDance technology to interrogate mutational hotspots in 67 genes (51.5 kb in total) in 276 biopsies of testes from 5 men (median age: 83 years). Following ultra-deep sequencing (~16,000x), development of a low-frequency variant prioritization strategy and targeted validation, we identified 61 distinct variants present at frequencies as low as 0.06%, including 54 variants not previously directly associated with selfish selection. The majority (80%) of variants identified have previously been implicated in developmental disorders and/or oncogenesis and include mutations in six newly associated genes (BRAF, CBL, MAP2K1, MAP2K2, RAF1 and SOS1), all of which encode components of RAS-MAPK pathway and activate signaling. Our findings extend the link between mutations dysregulating the RAS-MAPK pathway and selfish selection, and show that the ageing male germline is a repository for such deleterious mutations

    Refinement type contracts for verification of scientific investigative software

    Full text link
    Our scientific knowledge is increasingly built on software output. User code which defines data analysis pipelines and computational models is essential for research in the natural and social sciences, but little is known about how to ensure its correctness. The structure of this code and the development process used to build it limit the utility of traditional testing methodology. Formal methods for software verification have seen great success in ensuring code correctness but generally require more specialized training, development time, and funding than is available in the natural and social sciences. Here, we present a Python library which uses lightweight formal methods to provide correctness guarantees without the need for specialized knowledge or substantial time investment. Our package provides runtime verification of function entry and exit condition contracts using refinement types. It allows checking hyperproperties within contracts and offers automated test case generation to supplement online checking. We co-developed our tool with a medium-sized (\approx3000 LOC) software package which simulates decision-making in cognitive neuroscience. In addition to helping us locate trivial bugs earlier on in the development cycle, our tool was able to locate four bugs which may have been difficult to find using traditional testing methods. It was also able to find bugs in user code which did not contain contracts or refinement type annotations. This demonstrates how formal methods can be used to verify the correctness of scientific software which is difficult to test with mainstream approaches

    Maternal iron deficiency perturbs embryonic cardiovascular development in mice.

    Get PDF
    Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women

    Cellular interference in craniofrontonasal syndrome: Males mosaic for mutations in the x-linked EFNB1 gene are more severely affected than true hemizygotes

    Get PDF
    Craniofrontonasal syndrome (CFNS), an X-linked disorder caused by loss-of-function mutations of EFNB1, exhibits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, craniosynostosis and additional minor malformations, but males are usually more mildly affected with hypertelorism as the only feature. X-inactivation is proposed to explain the more severe outcome in heterozygous females, as this leads to functional mosaicism for cells with differing expression of EPHRIN-B1, generating abnormal tissue boundariesa process that cannot occur in hemizygous males. Apparently challenging this model, males occasionally present with a more severe female-like CFNS phenotype. We hypothesized that such individuals might be mosaic for EFNB1 mutations and investigated this possibility in multiple tissue samples from six sporadically presenting males. Using denaturing high performance liquid chromatography, massively parallel sequencing and multiplex-ligation-dependent probe amplification (MLPA) to increase sensitivity above standard dideoxy sequencing, we identified mosaic mutations of EFNB1 in all cases, comprising three missense changes, two gene deletions and a novel point mutation within the 5 untranslated region (UTR). Quantification by Pyrosequencing and MLPA demonstrated levels of mutant cells between 15 and 69. The 5 UTR variant mutates the stop codon of a small upstream open reading frame that, using a dual-luciferase reporter construct, was demonstrated to exacerbate interference with translation of the wild-type protein. These results demonstrate a more severe outcome in mosaic than in constitutionally deficient males in an X-linked dominant disorder and provide further support for the cellular interference mechanism, normally related to X-inactivation in females. © The Author 2013. Published by Oxford University Press. All rights reserved
    corecore