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Craniofrontonasal syndrome (CFNS), an X-linked disorder caused by loss-of-function mutations of EFNB1, exhi-
bits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, cra-
niosynostosis and additional minor malformations, but males are usually more mildly affected with hypertelorism
as the only feature. X-inactivation is proposed to explain the more severe outcome in heterozygous females, as
this leads to functional mosaicism for cells with differing expression of EPHRIN-B1, generating abnormal
tissue boundaries—a process that cannot occur in hemizygous males. Apparently challenging this model,
males occasionally present with a more severe female-like CFNS phenotype. We hypothesized that such indivi-
duals might be mosaic for EFNB1 mutations and investigated this possibility in multiple tissue samples from
six sporadically presenting males. Using denaturing high performance liquid chromatography, massively parallel
sequencing and multiplex-ligation-dependent probe amplification (MLPA) to increase sensitivity above standard
dideoxy sequencing, we identified mosaic mutations of EFNB1 in all cases, comprising three missense changes,
two gene deletions and a novel point mutation within the 5′ untranslated region (UTR). Quantification by
Pyrosequencing and MLPA demonstrated levels of mutant cells between 15 and 69%. The 5′ UTR variant mutates
the stop codon of a small upstream open reading frame that, using a dual-luciferase reporter construct, was
demonstrated to exacerbate interference with translation of the wild-type protein. These results demonstrate a
more severe outcome in mosaic than in constitutionally deficient males in an X-linked dominant disorder and
provide further support for the cellular interference mechanism, normally related to X-inactivation in females.
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INTRODUCTION

Craniofrontonasal syndrome [CFNS (MIM 304110)] is a rare,
X-linked disorder in which heterozygous females paradoxically
account for the majority of cases and are more severely affected
than hemizygous males. CFNS constitutes a specific cause of
frontonasal malformation (1,2), in which females typically
have severe hypertelorism with a grooved nasal tip, synostosis
of the coronal sutures (unilateral or bilateral), craniofacial
asymmetry, downslanting palpebral fissures, fine frizzy hair,
abnormal scapular development (Sprengel shoulder), partial
cutaneous syndactyly of the hands and feet and longitudinal
ridging of the nails. Less frequent features include cleft lip+
palate, duplication of the thumbs or halluces, partial or complete
agenesis of the corpus callosum and learning disability (3,4). In
contrast, males are usually more mildly affected with a non-
specific phenotype of hypertelorism and occasional cleft lip
(2,5–7) (Fig. 1A).

The exclusive, or disproportionately, female-restricted
phenotypic expression in dominantly inherited X-linked disor-
ders can be caused either by male lethality, typified by diseases
such as oral-facial-digital syndrome type I, incontinentia pig-
menti and Rett syndrome, or, very rarely, to male sparing,
described, to our knowledge, in only two disorders: infantile epi-
leptic encephalopathy caused by mutations in PCDH19 (8,9),
and CFNS caused by mutations in EFNB1 (10,11). The explan-
ation for the sex bias in disease manifestation, whereby hetero-
zygous females are paradoxically more severely affected than
hemizygous males, is proposed to be related to a combination
of (i) random X-inactivation occurring in females, rendering
them mosaic, (ii) the specific roles of these genes (which are nor-
mally subjected to X-inactivation) in cell surface properties,
causing abnormal cellular interactions in the mosaic state and
(iii) the presumed functional redundancy of the gene in the non-
mosaic hemizygous male. This unusual mechanism has been
termed cellular interference (12), a name originating from the
earlier hypothesis of metabolic interference (13).

The cellular interference mechanism is difficult to test in
humans, and previous studies of females with CFNS carrying
confirmed EFNB1 mutations did not demonstrate any correlation
between clinical severity and either the extent or direction of
skewing of X-inactivation (10) or in the case of females exhibiting
somatic mosaicism, the level of mutational mosaicism in somatic
tissues (14). However, studies of mice are strongly supportive of
cellular interference. Female mice heterozygous for a
loss-of-function allele (Efnb1+/2) exhibit polydactyly, a pheno-
type not observed in either hemizygous male (Efnb12) or homo-
zygous female (Efnb12/2) mutants. This phenotype could be
related to the formation of patches of ephrin-b1 expressing and
non-expressing cells that exhibited down- and up-regulation, re-
spectively, of the cognate cell-surface receptors EphB2, EphB3
and EphA4 (15,16). Using an X-linked green-fluorescent
protein transgene, it was shown that the patch boundaries corre-
sponded exactly to those for the X-inactivation pattern;
however, the patch sizes were much larger than those normally
generated by X-inactivation indicating an active homotypic cell
sorting process (15). Further studies of Efnb1+/2 heterozygous
mice have shown patchy expression of ephrin-b1 in additional
tissues, including calvaria and palate, and related this to perturb-
ation in downstream signalling (17,18).

In humans, although the classical CFNS phenotype is almost
entirely restricted to females, very occasionally 46,XY males
present in a similar fashion. To date, there are only two convin-
cing case reports (19,20) (both subjects are analysed here), but
we describe in addition a further four previously unpublished
cases. After ruling out alternative explanations such as 46,XX
sex reversal, one possible interpretation for this phenomenon,
based on the cellular interference hypothesis, could be post-
zygotic mosaicism for the mutation. To investigate this
further, we have scrutinized EFNB1 for mosaic mutations in
these six sporadically affected CFNS males. Here, we report
the identification of mosaic EFNB1 mutations in every individ-
ual, confirming the suggested diagnosis and supporting the
hypothesis of cellular interference in humans. Moreover, in
one case, we identified an unusual mutation of an upstream
open reading frame (uORF) on which we undertook further
functional studies, demonstrating that this interferes with trans-
lation of the ORF encoding EPHRIN-B1.

RESULTS

Subjects

Six severely affected sporadic males with a diagnosis of CFNS
were identified; Subjects 3269 and 4021 are the cases previ-
ously reported by Kapusta et al. (20) and Kwee and Lindhout
(19) respectively, and the remainder represent previously
unpublished cases. In an earlier study, we had analysed
EFNB1 in two of these individuals (Subjects 3269 and
1330), but did not identify causative mutations (14).

The clinical features of the six males are summarized in
Table 1 and illustrated in Figure 1B–G, in which their more
severe dysmorphic features are evident when compared with
affected male offspring of females with CFNS, who are obli-
gate carriers of the EFNB1 mutation (Fig. 1A). All six subjects
had documented coronal craniosynostosis, and all exhibited
severe hypertelorism. Other characteristic features not found
in CFNS obligate carrier males included bifid nasal tip and
longitudinally split nails. Some individuals had additional sig-
nificant phenotypes, including undescended testes and mild
learning disability.

Mosaic point mutations of EFNB1 in males with CFNS

Initially, we attempted to identify mosaic mutations in the
coding region of EFNB1 by WAVE denaturing high perform-
ance liquid chromatography (DHPLC), as we have previously
shown that this is more sensitive than dideoxy sequencing for
the detection of low levels of mutant alleles (14). Our original
series comprised three male CFNS cases (Subjects 3269,
1330 and 4021; Fig. 1B–D), from whom we analysed DNA
extracted from multiple tissue samples (blood, buccal scrap-
ings and hair roots) because the level of mosaicism might
vary depending on the timing and tissue origin of the mutation.
In Subject 3269, a subtly abnormal WAVE DHPLC trace was
detected in exon 2 of EFNB1, and dideoxy sequencing identi-
fied a corresponding point mutation, c.496C . T, encoding the
nonsense change p.Q166∗ (Fig. 2A). This mutation, previously
described in a mildly affected hemizygous father and his
two daughters with classical CFNS (14,20), was confirmed
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by restriction digest, and the level of mosaicism quantified by
Pyrosequencing. Different proportions of the mutant EFNB1
allele (27 and 35%) were present in buccal scrapings and
blood, respectively (Fig. 2A).

Our screening strategy did not, however, identify mutations in
Subjects 1330 and 4021. Because this could be due to low levels
of mutant allele in available tissues or the mutations were
located outside the coding sequences screened, we undertook
massively parallel sequencing (MPS) of a 13.7 kb genomic
region including the entire EFNB1 gene in both subjects, to-
gether with a newly ascertained CFNS male in whom we did
not undertake prior dideoxy sequencing (Subject 4271,
Fig. 1E). We sequenced pooled PCR products from all available
tissue samples and generated over 5 million 36 bp reads, 82% of
which mapped to EFNB1, with an average sequence depth
of 6900-fold (Supplementary Material, Fig. S1). Variants were
ranked according to the percentage of reads with a variant
base at any given position (Supplementary Material,
Table S2); 97 variants had a frequency of ≥1%. The top 18
hits were accounted for by single nucleotide polymorphisms
(SNPs), all but one of which were documented in dbSNP (a
single C/– SNP accounted for 2 hits). The 19th variant call,

c.295T . G in the 5′ untranslated region (UTR), had eluded
our previous screen of EFNB1 because it lay outside the
coding region. The c.295T . G mutation was found to origin-
ate from Subject 1330, who exhibited variable levels of mosai-
cism (19–54%) in different tissues (Fig. 2B). The mutation was
absent in the subject’s unaffected mother, establishing that it had
arisen de novo and was also absent in 386 normal controls.
Further supporting the likely pathogenicity of this change, we
identified a mosaic c.295T . C mutation at the same nucleo-
tide in a female with classical CFNS (Supplementary Material,
Fig. S2A). Additional functional investigation of the pathogen-
icity of the c.295T . G variant is described in the final section
of the Results.

Further scrutiny of data from the MPS experiment revealed
five changes within the EFNB1 coding sequence (Supplemen-
tary Material, Table S2). One of these, c.196C . T in exon 2
encoding p.R66∗—a recurrent nonsense mutation previously
identified in 12 CFNS families (10,14,21,22) —was confirmed
by dideoxy sequencing, restriction digest and Pyrosequencing
to be mosaic (46–69%) and de novo in Subject 4271 (Fig. 1E).
We followed up the other potential coding sequence changes
from the MPS experiment, using a combination of dideoxy

Figure 1. Clinical features of males hemizygous for EFNB1 mutations (A) and mosaic males analysed in this study (B–G). (A) Previously published males
(14,32) with EFNB1 mutations. The individuals shown are the offspring of females carrying EFNB1 mutations, indicating that all these males are fully hemi-
zygous; this was confirmed by restriction digest and/or sequencing of DNA isolated from peripheral blood. Note mild facial features of these individuals, who
exhibit hypertelorism, but not craniosynostosis. (B–G) Males diagnosed with CFNS (pre-operative images unless stated). Common features include coronal
craniosynostosis [three-dimensional computed tomographic skull reconstructions in Subject 4354 (F) shows a patent right coronal suture (black arrow), but
the left coronal suture is absent (red arrow) and instead there is a bony ridge; Subject 3301 (G) has a large ossification defect in the position of the metopic
suture (arrowhead) and coronal craniosynostosis], craniofacial asymmetry [shown most clearly in the top view in (C)], hypertelorism, downslanting palpebral
fissures and broad nasal roots with bifid nasal tips. Wiry hair is also present in most cases. Subject 1330 also presented with unilateral cleft lip (C) and Subject
4021 with duplex thumbs (D).
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sequencing and restriction digest, but were unable to identify
any causative mutation in the remaining Subject 4021.

Subsequent to these results, two further samples were
obtained from males with a diagnosis of CFNS (Subjects
4354 and 3301). In one of these (4354), dideoxy sequencing
identified a de novo mosaic point mutation of EFNB1,
c.404C . A encoding p.T135N, quantified in buccal scrapings
and blood at 15 and 36%, respectively (Fig. 2D). Although this
mutation has not been reported previously, it is predicted to be
damaging by Polyphen2 analysis (23) (score of 0.993). The
mutated threonine 135 residue locates in the extracellular
domain of EPHRIN-B1 within a b-sheet; mutations of 3
nearby amino acids within this fold, p.S136, p.T137 and
p.S138, were previously identified in CFNS females (14,21).
In Subject 3301, no mutations were identified by either
WAVE DHPLC or dideoxy sequencing.

Mosaic deletions of EFNB1 in males with CFNS

As we were unable to detect point mutations or small indels
in Subjects 4021 and 3301, we next carried out multiplex-
ligation-dependent probe amplification (MLPA) on DNA
from all available tissues to determine if there was mosaicism
for a deletion of part or all of EFNB1. In Subject 3301, a
sample of blood DNA demonstrated complete deletion of all
5 exons of EFNB1 in 39.5% of cells, based on the relative
reduction in heights of the MLPA peaks when compared
with male controls (Fig. 2E). The deletion was confirmed by
hybridization of DNA to a SNP microarray using the Illumina
HumanCytoSNP12 BeadChip (�300 k), suggesting a deletion
size of �137–211 kb and possible overlap with the 3′ end of
the neighbouring gene, STARD8 (Supplementary Material,
Fig. S3). MLPA analysis of blood DNA from Subject 4021
suggested a low level mosaic deletion of EFNB1 exons 3–5
in 17.4% of cells (Fig. 2E). As this finding was near the
sensitivity limit of MLPA, we used inverse PCR to support
this result by isolating a specific breakpoint product. This
confirmed that there was a deletion of 8391 bp in the patient
sample; there was a 4 bp microhomology at the two break-
points, suggestive of repair by non-homologous end joining
(Fig. 2F). As the deletion extended beyond the region ampli-
fied by long PCR in the MPS experiment, it would not have
been represented in the sequencing products that we had
analysed.

Mutations at nucleotide-95 locate in an uORF
and abrogate translation

As described above, Subject 1330 was mosaic for a 295T .
G substitution, and we identified a mosaic c.295T . C
change in a female with CFNS. Both mutations are predicted
to abolish the stop codon of a short (4 codons) uORF, with the
effect of elongating the predicted translation product to
overlap by 44 codons (in a different frame) with that of the
main EFNB1 translation product. Because uORFs have been
implicated both in normal regulation of expression and in
disease states (24,25), we decided to investigate this further
by exploring evolutionary conservation and undertaking
experimental studies.T
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Analysis of EFNB1 orthologues in a variety of vertebrates
revealed unequivocal homologues of the uORF in all mamma-
lian sequences, including evolutionarily ancient placental
mammals (hyrax and armadillo) and marsupials (wallaby). A
similar uORF is also present in chicken and zebra finch. The
most divergent upstream sequences from zebrafish and
Xenopus contain longer uORFs (nine and seven codons, respect-
ively), and downstream of the zebrafish uORF, an in-frame ATG
is present (Fig. 3A). This high degree of sequence homology is
suggestive of conserved function, at least in birds and mammals.
The human EFNB1 main ORF and uORF translation start
sequences are almost identical, and both fit with the Kozak
consensus sequence for translation efficiency (Fig. 3B).

As uORFs commonly modulate translation of downstream
ORFs (dORFs) (25), we investigated whether the c.295T .
G mutation affected EPHRIN-B1 production. We first con-
firmed that the mutant allele was expressed in Subject 1330
(Supplementary Material, Fig. S2B), excluding any major
negative regulatory effect on transcription. Using a previously

described dual luciferase reporter construct to measure transla-
tional output (25), we found a significant reduction in transla-
tion from the main dORF in the presence of c.295T . G
(Fig. 3). This inhibition was completely reversed to the wild-
type (wt) level by introducing a stop at the next codon. Finally,
when the uORF start codon was mutated in the context of the
c.295T . G variant, translation of the dORF was increased to
a level significantly higher than for the wt sequence, suggest-
ing that the uORF is a physiologically acting negative regula-
tor of EFNB1 translation and that abolition of the stop codon
by the c.295T . G mutation accentuates this negative effect.

DISCUSSION

Males with classical CFNS features appear not to fit with the
cellular interference model for pathogenesis of this X-linked
disorder, whereby females are severely affected because of a
functionally mosaic state caused by X-inactivation, but

Figure 2. Mosaic EFNB1 mutations in CFNS males. (A–D) Each panel shows from top to bottom, mutant and normal DNA sequence chromatograms (DNA
source was blood), corresponding restriction digest confirmation (the mutant allele is denoted by an asterisk) and quantification of mutant allele level by Pyr-
osequencing. (A) Nonsense mutation c.496C . T in Subject 3269 that abolishes a BglI restriction site. Quantification of the level of mosaicism in blood and
buccal scrapings showed 35 and 27% mutant allele, respectively. (B) Subject 1330 has a T . G mutation 95 bp upstream of the EFNB1 ORF that abolishes
a DdeI site. Analysis of mutant DNA levels from blood, skin fibroblasts, saliva and hair root confirmed mosaicism and showed a lower amount of mutant
DNA in hair root (19%) when compared with other samples (52–55%). (C) Nonsense mutation c.196C . T in Subject 4271 that abolishes an AvaI site.
This recurrent mutation was quantified at near 50% in a heterozygous female and at 46 and 69% in tissues from the affected male. (D) Missense mutation
c.404C . A found in Subject 4354 creates an MseI restriction site. Mosaicism in buccal scrapings and blood was quantified at 15 and 36%, respectively.
(E) Bar chart showing results of MLPA analysis of EFNB1 exons 1–5 in Subjects 3301 (red) and 4021 (blue) when compared with five normal male controls
(black). Bar heights indicate the relative amount of each exon in each sample; Subject 3301 is mosaic for deletion of the entire gene with blood containing on
average 39.5% of the deleted DNA, whereas Subject 4021 is mosaic for a deletion that includes exons 3–5 (17.4% deleted DNA). (F) Upper panel, scale drawing
of EFNB1 gene (exons shown as boxes) showing positions of primers used to analyse Subject 4021. Middle panel, PCR amplification with this primer pair yields
a specific product of �300 bp in blood DNA from this individual. Lower panel, dideoxy sequencing of this product demonstrates a deletion of 8391 bp and
identifies microhomology of 4 bp (GGAC) at the breakpoint.
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males are spared because of redundancy in the essential func-
tions of EFNB1. We investigated this problem by studying six
males, all with CFNS phenotypes resembling those in females.
We hypothesized that, if cellular interference is the mechan-
ism responsible for development of classical CFNS, an analo-
gous situation could arise in males, if they were somatically
mosaic for mutation of EFNB1. To improve the chances of
detecting a mosaic mutation, we collected as many tissue
types as possible from each individual and analysed these by
a number of different techniques (DHPLC, MPS and MLPA)
to increase sensitivity above dideoxy sequencing. Ultimately,
we detected pathogenic, mosaic EFNB1 mutations in all six
males, including two deletions spanning all or part of the
gene. This finding provides strong support for the occurrence
of cellular interference in humans. Previously, a single male
with a mosaic mutation of PCDH19 causing infantile epileptic
encephalopathy was identified and proposed to support cellu-
lar interference in that disorder (8,9).

Of note, this model of pathogenesis is not necessarily
limited to mosaic mutations of EFNB1, but could extend to
males with mosaicism for larger rearrangements of the X
chromosome that include normally functioning EFNB1 gene
copies. Analogous to the situation in females, where heterozy-
gous duplication of EFNB1 was shown to be associated with
mild CFNS features (26), a case was recently reported of a
male with mosaicism for a supernumerary ring X chromosome
containing a normal EFNB1 gene copy [karyotype 46,XY/
47,XY,r(X)]. The affected individual exhibited several clinical

features suggestive of CFNS, and the authors of the paper
noted several other reminiscent, but less well-characterized
cases in older literature (27).

We sampled cells of different embryonic lineages (buccal—
endoderm, peripheral blood—mesoderm and hair root—ecto-
derm), finding that mutational mosaicism was present in all
lineages and that it attained relatively high levels (ranging
from 15 to 69%). This suggests that the mosaicism arose at a toti-
potent stage of development within the first few cell divisions of
the embryo, most likely by post-zygotic mutation—although
back mutation of a zygotic error cannot be formally excluded.
Hence, these events may occur slightly earlier than functional
mosaicism in females arising from X-inactivation that initiates
around the eight-cell stage (28). Nevertheless, the phenotypic
outcomes in the two sexes appear equivalent, probably
because the abnormal developmental processes leading to the
CFNS phenotype involve later tissue patterning and result in
similarly sized mosaic patches. Supporting the concept that rela-
tively high level mosaicism is required to develop the full CFNS
phenotype, the one previously described male mosaic for
EFNB1 mutation, who had low levels of mutation both in
blood (3%) and hair roots (2%), only manifested the mild fea-
tures associated with the male carrier state (14).

As part of this work, we identified a novel mechanism of
CFNS pathogenesis, involving the predicted translational read-
through of a conserved uORF, leading to repression of trans-
lation of EFNB1 from the main dORF. uORFs occur in
around a half of human genes, and their role in negatively

Figure 3. An uORF modulates EFNB1 translation. (A) Multi-species alignment of EFNB1 sequences including the first five codons of EFNB1 and approximately
140 bp upstream. The c.295T . G and c.295T . C variants found in Subject 1330 and a female CFNS patient, respectively, are indicated at the top of the
alignment, and the four-codon uORF affected by the mutations is boxed. A further uORF found in chicken is also boxed, as are the larger uORFs found in
the Xenopus and zebrafish upstream sequences. The zebrafish sequence includes an upstream ATG (underlined) that is in frame with the dORF. Sixteen
amino acids of the wallaby sequence were removed (position indicated by asterisk) to facilitate the alignment. Efnb1 upstream sequences were from
Ensembl, unless sufficient 5′ UTR sequence was available in the NCBI mRNA entry: human, NM_004429; rhesus, NM_001261375; marmoset,
XM_002762956; mouse, NM_010110; rat, NM_017089; cow, NM_001080299; and chicken, NM_205035. (B) Comparison of the human EFNB1 sequences
around the uORF and dORF start codons with the Kozak consensus. (C) Luciferase assays of the effects of uORF sequences on translation of the downstream
EFNB1 ORF. On the left are shown schematically the sequences of the four constructs used and on the right, the luciferase activity generated from these con-
structs. The uORF is boxed, the nucleotides at start and stop codons are highlighted in red, and the mutated nucleotides are indicated by asterisks. The c.295T .

G mutation (construct 1330) generates a large extended uORF that is out-of-frame with the luciferase dORF and overlaps it by 13 codons. The construct
1330STOP incorporates a new stop codon adjacent to the mutated stop of the original uORF. In construct 1330TTG, the uORF is abolished by mutation of the
start codon. Results are normalized to wt, and error bars represent + standard error of mean of ≥12 replicates. ∗P ¼ 0.0002; ∗∗P ¼ 0.01.
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regulating expression of dORFs is increasingly recognized
(25). Although minor effects on transcription may occur, the
major mechanism by which uORFs act is to decrease the pro-
cessive readthrough by the 40S ribosomal subunits before they
reach the ATG codon of the dORF to initiate translation
(24,25). The conservation of the EFNB1 uORF in a wide
range of mammalian species and birds, and its match to the
Kozak consensus, is suggestive of a physiological function
in regulating ribosomal loading at the AUG of the EFNB1
RNA. However, both the short length of the uORF and the
relatively wide separation with the dORF are factors that pre-
vious studies suggest would mitigate the negative effect on the
dORF (29).

In addition to physiological regulation by uORFs, their patho-
logical mutation represents a rare, but probably under-
recognized process reported in at least 14 human diseases.
Most previous examples have involved either the disruption of
ATG start codons of uORFs, leading to increased translation
from the dORF, or the creation of ATG codons creating novel
uORFs and leading to reduced translation from the dORF
(25). To our knowledge, EFNB1 represents the first well-
characterized case in which the physiologically reduced transla-
tion caused by an uORF (as reflected in the excessive luciferase
activity associated with the 1330TTG construct completely
lacking the uORF, see Fig. 3C) is further accentuated by a
stop-loss mutation increasing the length of the uORF, creating
a translation product that is out-of-frame and extends beyond
the dORF start codon. Such a mutation is expected to reduce
the loading of ribosomes onto the dORF, as reflected in the
49% reduction in luciferase activity (Fig. 3C, compare con-
structs wt and 1330). By comparison, a superficially analogous
stop-loss mutation in U2HR, causing Marie Unna hereditary
hypotrichosis, resulted in increased translation of the dORF
because, in contrast to the case of EFNB1, the uORF and
dORF are in the same frame, thus, yielding a single ORF (30).
In the case of THPO, a mutation creating a premature stop
codon in the uORF has been described leading to increased ex-
pression of the dORF (thrombocythaemia): this represents the
opposite of the mechanism described here (31). Overall, we
suspect that stop-loss mutations of uORFs are likely to represent
an under-recognized class of hypomorphic mutations, although
a search of the Human Gene Mutation Database (HGMD) (see
Materials and Methods) did not yield any definite examples.

In conclusion, our work has important practical implications
for the molecular diagnosis of CFNS, both in males and
females. First, suspected cases negative for mutations or dele-
tions within the coding part of the gene should be screened for
variants within the 5′ UTR that may affect translation of
EPHRIN-B1. Second, in cases where the diagnosis of CFNS
is strongly suspected based on phenotypic assessment, very
careful analysis both for variant point mutations and altera-
tions in EFNB1 copy number (both decreased and increased)
may be required to achieve a definitive diagnosis.

MATERIALS AND METHODS

Patients

The clinical studies were approved by Oxfordshire Research
Ethics Committee B (reference C02.143) and Riverside

Research Ethics Committee (reference 09/H0706/20), and
informed consent was obtained from all participants by the re-
ferring clinicians. Six male subjects with normal male karyo-
types (46,XY) exhibiting the characteristic features of CFNS
were analysed in this work. DNA was obtained from periph-
eral blood samples (all subjects), cultured fibroblasts
(Subject 1330), buccal brushings (Subjects 3269, 4354 and
3301), saliva (Subjects 1330, 4271 and 4021) and hair roots
(Subjects 1330 and 4021) by phenol–chloroform extraction.

Detection of EFNB1 intragenic mutations

Mutations of EFNB1 were detected by a combination of
DHPLC, PCR, MPS and MLPA. DHPLC was performed on a
Wave 3500HT instrument (Transgenomic, Glasgow, UK).
Primers and conditions for all PCR described in this and subse-
quent sections are provided in Supplementary Material,
Table S1 and were designed against NM_004429 (cDNA) and
NG_008887 (genomic). MPS was carried out on DNA extracted
from Subjects 1330 (blood, fibroblast cell line and hair root),
4271 (blood and saliva) and 4021 (saliva and hair root). Three
overlapping PCR products amplified from all tissue samples
and spanning 13.7 kb over the entire EFNB1 gene (from
1239 bp upstream of the EFNB1 ATG to 1590 bp downstream
of the stop codon) were pooled in equimolar amounts, and this
DNA (total of 3.8 mg) was used to generate a library that was
sequenced (single-end reads, 36 bases) using the Solexa plat-
form (Genome Analyzer II, Illumina, San Diego, CA, USA)
according to the manufacturer’s instructions. Sequences were
aligned to EFNB1 using MAQ (http://maq.sourceforge.net/
maq-man.shtml) and SNPs called with the MAQ algorithm
cns2snp. Indel analysis was carried out using Novoalign soft-
ware (www.Novocraft.com).

Quantification of mosaic mutations

Quantification of mosaicism in samples with point mutations
was carried out by Pyrosequencing on a PyroMark Q96 MD
(Qiagen, Hilden, Germany) of control and patient samples pre-
pared by PCR, with each assay performed on three independent
reactions as previously described (14). For each mutation ana-
lysed, the dispensation order, and corresponding peaks used to
estimate relative levels of normal versus mutant species (sepa-
rated by/) were as follows: 496C . T: G1A2C3A4T5G6T7A8G9-

T10A11G12T13A14G15T16G17C18T19, A4/A8 and T7/T5;
c.295T . G, A1T2G3C4G5C6G7A8G9T10G11A12G13C14G15

C16T17C18, A12/A8 and G11/G9; 196C . T, G1A2C3A4-

G5A6G7T8G9A10G11C12A13G14, G5/G9 and A6/A10; 404C .
A, T1G2C3T4A5G6T7C8T9G10T11G12A13G14T15C16, T4/ T9

and G6/G12.

Detection of mosaic EFNB1 deletions

Deletions of each of the five exons EFNB1 were assayed inde-
pendently by MLPA (MRC Holland, Amsterdam, The Nether-
lands) according to protocols available from MRC-Holland:
http://www.mrc-holland.com/. Fragments were analysed by
capillary electrophoresis using an ABI 3130 containing
POP-7 polymer. Peaks were visualized using Gene Mapper
v3.7 (Applied Biosystems, Foster City, CA, USA). Subject
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3301 was further analysed by hybridization of DNA to a
HumanCytoSNP-12 BeadChip (�300 k), according to the
manufacturer’s recommendations (Illumina, San Diego, CA,
USA).

Isolation of deletion breakpoints by inverse PCR

Two micrograms of DNA (extracted from blood) from Subject
4021 were digested overnight with 40 units of MspI in a total
volume of 100 ml. Following phenol–chloroform extraction
and precipitation, the DNA was resuspended in 400 ml of
1× ligase buffer and incubated overnight at room temperature
with 10 U T4 DNA ligase (Roche, Indianapolis, IN, USA).
The DNA was reprecipitated, resuspended in 20 ml of water,
and PCR amplification was carried out with primers within
exon 2 (E2R1 and E2F2) pointing away from each other.
The PCR product was sequenced allowing design of primer
4021BPR for specific amplification (with primer E2F2) of
the breakpoint in genomic DNA.

Analysis of uORF by mutagenesis and luciferase assay

The EFNB1 5′ UTR was amplified by PCR, and both normal and
295T . G mutations from Subject 1330 were subcloned into
pGEM-T Easy (Promega, Southampton, UK). Site-directed mu-
tagenesis was used to introduce a stop codon (TAG) immediate-
ly downstream of the codon containing 295G (mutagenesis
primer 1330STOP) and to ablate the uORF ATG codon in the
presence of 295G (mutagenesis primer 1330TTG). NheI frag-
ments from the subclones were cloned into the NheI site imme-
diately preceding the Renilla luciferase ORF in the
dual-luciferase vector psiCHECK-2 (Promega), a kind gift of
David Pagliarini, that had been modified (25), so that Renilla
luciferase expression would be driven by the primary ATG
codon of EFNB1. All constructs were verified by dideoxy se-
quencing. Assays were carried out essentially as described
(25), except that HEK 293T cells were used and plates were
read and analysed using a FLUOstar OPTIMA instrument and
software (BMG LABTECH, Aylesbury, UK).

Bioinformatic search for stop-loss in uORFs

The HGMD professional release 2012.1 [(33); http://
www.hgmd.org], was searched for potential stop-loss variants
upstream of the initiation codon that had an in-frame ATG
start codon within 100 bp upstream of the variant. These
sequences were aligned to Hg19 (BLAT, UCSC genome
browser) to assess overlap with 5′ UTRs and examined manual-
ly. Four bona fide examples were found, but of these, three were
common SNPs and in the remaining case, an in-frame stop
codon was present upstream of the stop-loss variant.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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