22 research outputs found

    Tree Deletion Set has a Polynomial Kernel (but no OPT^O(1) approximation)

    Get PDF
    In the Tree Deletion Set problem the input is a graph G together with an integer k. The objective is to determine whether there exists a set S of at most k vertices such that G-S is a tree. The problem is NP-complete and even NP-hard to approximate within any factor of OPT^c for any constant c. In this paper we give a O(k^4) size kernel for the Tree Deletion Set problem. To the best of our knowledge our result is the first counterexample to the "conventional wisdom" that kernelization algorithms automatically provide approximation algorithms with approximation ratio close to the size of the kernel. An appealing feature of our kernelization algorithm is a new algebraic reduction rule that we use to handle the instances on which Tree Deletion Set is hard to approximate

    Forbidding Kuratowski Graphs as Immersions

    Full text link
    The immersion relation is a partial ordering relation on graphs that is weaker than the topological minor relation in the sense that if a graph GG contains a graph HH as a topological minor, then it also contains it as an immersion but not vice versa. Kuratowski graphs, namely K5K_{5} and K3,3K_{3,3}, give a precise characterization of planar graphs when excluded as topological minors. In this note we give a structural characterization of the graphs that exclude Kuratowski graphs as immersions. We prove that they can be constructed by applying consecutive ii-edge-sums, for i3i\leq 3, starting from graphs that are planar sub-cubic or of branch-width at most 10

    Cutwidth: obstructions and algorithmic aspects

    Get PDF
    Cutwidth is one of the classic layout parameters for graphs. It measures how well one can order the vertices of a graph in a linear manner, so that the maximum number of edges between any prefix and its complement suffix is minimized. As graphs of cutwidth at most kk are closed under taking immersions, the results of Robertson and Seymour imply that there is a finite list of minimal immersion obstructions for admitting a cut layout of width at most kk. We prove that every minimal immersion obstruction for cutwidth at most kk has size at most 2O(k3logk)2^{O(k^3\log k)}. As an interesting algorithmic byproduct, we design a new fixed-parameter algorithm for computing the cutwidth of a graph that runs in time 2O(k2logk)n2^{O(k^2\log k)}\cdot n, where kk is the optimum width and nn is the number of vertices. While being slower by a logk\log k-factor in the exponent than the fastest known algorithm, given by Thilikos, Bodlaender, and Serna in [Cutwidth I: A linear time fixed parameter algorithm, J. Algorithms, 56(1):1--24, 2005] and [Cutwidth II: Algorithms for partial ww-trees of bounded degree, J. Algorithms, 56(1):25--49, 2005], our algorithm has the advantage of being simpler and self-contained; arguably, it explains better the combinatorics of optimum-width layouts

    Forbidding Kuratowski graphs as immersions

    Get PDF
    The immersion relation is a partial ordering relation on graphs that is weaker than the topological minor relation in the sense that if a graph G contains a graph H as a topological minor, then it also contains it as an immersion but not vice versa. Kuratowski graphs, namely K 5 and K 3,3 , give a precise characterization of planar graphs when excluded as topological minors. In this note we give a structural characterization of the graphs that exclude Kuratowski graphs as immersions. We prove that they can be constructed by applying consecutive i-edge-sums, for i ≤ 3, starting from graphs that are planar sub-cubic or of branchwidth at most 10
    corecore