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Abstract
In the Tree Deletion Set problem the input is a graph G together with an integer k. The
objective is to determine whether there exists a set S of at most k vertices such that G \ S is a
tree. The problem is NP-complete and even NP-hard to approximate within any factor of OPTc

for any constant c. In this paper we give an O(k5) size kernel for the Tree Deletion Set
problem. An appealing feature of our kernelization algorithm is a new reduction rule, based on
system of linear equations, that we use to handle the instances on which Tree Deletion Set
is hard to approximate.
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1 Introduction

In the Tree Deletion Set problem we are given as input an undirected graph G and
integer k, and the task is to determine whether there exists a set S ⊆ V (G) of size at most k
such that G\S is a tree, that is, a connected acyclic graph. This problem was first mentioned
by Yannakakis [25] and is related to the classical Feedback Vertex Set problem. Here
input is a graph G and integer k and the goal is to decide whether there exists a set S on at
most k vertices such that G \ S is acyclic. The only difference between the two problems is
that in Tree Deletion Set G \S is required to be connected, while in Feedback Vertex
Set it is not. Both problems are known to be NP-complete [10, 25].
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Despite the apparent similarity between the two problems their computational complexities
differ quite dramatically. Feedback Vertex Set admits a factor 2-approximation algorithm,
while Tree Deletion Set is known to not admit any approximation algorithm with ratio
O(n1−ε) for any ε > 0, unless P = NP [1, 25]. With respect to parameterized algorithms, the
two problems exhibit more similar behavior. Indeed, some of the techniques that yield fixed
parameter tractable algorithms for Feedback Vertex Set [4, 5] can be adapted to also
work for Tree Deletion Set [21].

It is also interesting to compare the behavior of the two problems with respect to
polynomial time preprocessing procedures. Specifically, we consider the two problems in
the realm of kernelization. We say that a parameterized graph problem admits a kernel of
size f(k) if there exists a polynomial time algorithm, called a kernelization algorithm, that
given as input an instance (G, k) to the problem outputs an equivalent instance (G′, k′) with
k′ ≤ f(k) and |V (G′)|+ |E(G′)| ≤ f(k). If the function f is a polynomial, we say that the
problem admits a polynomial kernel. We refer to the surveys [11, 18] for an introduction to
kernelization. For the Feedback Vertex Set problem, Burrage et al. [3] gave a kernel of
size O(k11). Subsequently, Bodlaender [2] gave an improved kernel of size O(k3) and finally
Thomassé [22] gave a kernel of size O(k2). On the other hand the existence of a polynomial
kernel for Tree Deletion Set was open until this work. It seems difficult to directly adapt
any of the known kernelization algorithms for Feedback Vertex Set to Tree Deletion
Set. Indeed, Raman et al. [21] conjectured that Tree Deletion Set does not admit a
polynomial kernel.

The main reason to conjecture that Tree Deletion Set does not admit a polynomial
kernel stems from an apparent relation between kernelization and approximation algorithms
(cf. [19, page 15]). Most problems that admit a polynomial kernel, also have approximation
algorithms with approximation ratio polynomial in OPT (cf. [14, page 2]). Here OPT is the
value of the optimum solution to the input instance. In fact many kernelization algorithms
are already approximation algorithms with approximation ratio polynomial in OPT.

This relation between approximation and kernelization led to a conjecture [20, 8] that
Vertex Cover does not admit a kernel with (2− ε)k vertices for ε > 0, as this probably
would yield a factor (2− ε) approximation for the problem thus violating the Unique Games
Conjecture [13].

It is easy to show that an approximation algorithm for Tree Deletion Set with ratio
OPTO(1) would yield an approximation algorithm for the problem with ratio O(n1−ε) thereby
proving P = NP. In particular, suppose Tree Deletion Set had an OPTc algorithm for
some constant c. Since the algorithm will never output a set of size more than n, the
approximation ratio of the algorithm is upper bounded by min(OPTc, n

OPT ) ≤ n1− 1
c+1 . This

rules out approximation algorithms for Tree Deletion Set with ratio OPTO(1), and makes
it very tempting to conjecture that Tree Deletion Set does not admit a polynomial
kernel.

In this paper we show that Tree Deletion Set admits a kernel of size O(k5). To
the best of our knowledge this is among the few examples of problems that do admit a
polynomial kernel, but do not admit any approximation algorithm with ratio OPTO(1) under
plausible complexity assumptions. The only other example we are aware of is a special case
of the CSP studied by Kratsch and Wahlström [15].

Our Methods. The starting point of our kernel are known reduction rules for Feedback
Vertex Set adapted to our setting. We also adapt the strategy to model some “pendant
parts” of the graph by weight on vertices during the kernelization process to simplify the
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structure of the graph. By applying these graph theoretical reduction rules we can show that
there is a polynomial time algorithm that given an instance (G, k) of Tree Deletion Set
outputs an equivalent instance (G′, k′) and a partition of V (G′) into sets B, T , and I such
that
1. |B| = O(k2),
2. |T | = O(k4),
3. I is an independent set, and
4. for every v ∈ I, NG′(v) ⊆ B, and NG′(v) is a double clique.

Here a “double clique” means that for every pair x, y of vertices in NG′(v), there are two
edges between them. Thus we will allow G′ to be a multigraph, and consider a double edge
between two vertices as a cycle. In order to obtain a polynomial kernel for Tree Deletion
Set it is sufficient to reduce the set I to size polynomial in k.

For every vertex v ∈ I and tree deletion set S we know that |NG′(v) \ S| ≤ 1, since
otherwise G′ \ S would contain a double edge. Further, if v /∈ S then v has to be connected
to the rest of G′ \S and hence |NG′(v) \S| = 1, implying that v is a leaf in G′ \S. Therefore
G′ \ (S ∪ I) must be a tree. We can now reformulate the problem as follows.

For each vertex u in G′ \ I we have a variable xu which is set to 0 if u ∈ S and xu = 1
if u /∈ S. For each vertex v ∈ I we have a linear equation

∑
u∈N(v) xu = 1. The task is to

determine whether it is possible to set the variables to 0 or 1 such that (a) the subgraph of
G′ induced by the vertices with variables set to 1 is a tree and (b) the number of variables
set to 0 plus the number of unsatisfied linear equations is at most k.

At this point it looks difficult to reduce I by graph theoretic means, as performing
operations on these vertices correspond to making changes in a system of linear equations.
In order to reduce I we prove that there exists an algorithm that given a set S of linear
equations on n variables and an integer k in time O(|S|nω−1k) outputs a set S ′ ⊆ S of at
most (n+ 1)(k + 1) linear equations such that any assignment of the variables that violates
at most k linear equations of S ′ satisfies all the linear equations of S \ S ′. To reduce I we
simply apply this result and keep only the vertices of I that correspond to linear equations
in S ′. We believe that our reduction rule for linear equations will find more applications in
the future and, while not as involved, adds a little to the toolbox of algebraic reduction rules
for kernelization (see, for example, [7, 6, 17, 16, 23]).

Due to space constraints, the proofs of lemmata marked with ? are deferred to the full
version of the paper.

2 Basic Notions

For every positive integer n we denote by [n] the set {1, 2, . . . , n}, N denotes the set of
positive integers, and R denotes the real numbers.

For a graph G = (V,E), we use V (G) to denote its vertex set V and E(G) to denote
its edge set E. If S ⊆ V (G) we denote by G \ S the graph obtained from G after removing
the vertices of S. In the case where S = {u}, we abuse notation and write G \ u instead of
G \ {u}. For S ⊆ V (G), the neighborhood of S in G, NG(S), is the set {u ∈ V (G) \ S | ∃v ∈
S : {u, v} ∈ E(G)}. Again, in the case where S = {v} we abuse notation and write NG(v)
instead of NG({v}). The degree of vertex v denoted deg(v) is the number of edges incident
to it, loops being counted twice. A graph is connected if there is a path between any pair
of its vertices. A connected component in a graph G is a set of vertices H such that G[H]
is connected and H is maximal with this property. We use C(G) to denote the set of the
connected components of G. Given a graph G and a set S ⊆ G, we say that S is a feedback
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vertex set of G if the graph G \ S does not contain any cycles. In the case where G \ S is
connected we call S tree deletion set of G. Moreover, given a set S ⊆ V (G), we say that S is
a double clique of G if every pair of vertices in S is joined by a double edge.

Given two vectors x and y we denote by dH(x, y) the Hamming distance of x and y, that
is, dH(x, y) is equal to the number of positions where the vectors differ. For every k ∈ N we
denote by 0k the k-component vector (0, 0, . . . , 0). When k is implied from the context we
abuse notation and denote 0k as 0.

For a rooted tree T and vertex set M in V (T ) the least common ancestor-closure (LCA-
closure) LCA-closure(M) is obtained by the following process. Initially, setM ′ = M . Then,
as long as there are vertices x and y in M ′ whose least common ancestor w is not in M ′,
add w to M ′. Finally, output M ′ as the LCA-closure of M .

I Lemma 1 (Fomin et al. [9]). Let T be a tree, M ⊆ V (T ), and M ′ = LCA-closure(M).
Then, |M ′| ≤ 2|M | and for every connected component C of T \M ′, |NT (C)| ≤ 2.

3 A polynomial kernel for Tree Deletion Set

In this section we prove a polynomial size kernel for a weighted variant of the Tree Deletion
Set problem. More precisely the problem we will study is following.

Weighted Tree Deletion Set (wTDS)
Instance: A graph G, a function w : V (G)→ N, and a non-negative integer k.

Parameter: k.
Question: Does there exist a set S ⊆ V (G) such that

∑
v∈S

w(v) ≤ k and
G \ S is a tree?

3.1 Known Reduction Rules for wTDS
In this subsection we state some already known reduction rules for wTDS that are going to
be needed during our proofs.

I Reduction Rule 1 (Raman et al. [21]). If the input graph is disconnected, then delete all
vertices in connected components of weight less than (

∑
v∈V w(v))− k and decrease k by the

weight of the deleted vertices.

I Observation 2 (Raman et al. [21]). If
(∑

v∈V w(v)
)
> 2k, then after the exhaustive

application of Reduction Rule 1 the graph has at most one connected component.

I Reduction Rule 2 (Raman et al. [21]). If v is of degree 1 and u is its only neighbor, then
delete v and increase the weight of u by the weight of v.

I Reduction Rule 3 (Raman et al. [21]). If v0, v1, . . . , vl, vl+1 is a path in the input graph,
such that l ≥ 3 and deg(vi) = 2 for every i ∈ [l], then replace the vertices v1, . . . , vl by two
vertices u1 and u2 with edges {v0, u1}, {u1, u2}, and {u2, vl+1} and with w(u1) = min{w(vi) |
i ∈ [l]} and w(u2) =

(∑l
i=1 w(vi)

)
− w(u1).

Given a vertex x of G, an x-flower of order k is a set of k cycles pairwise intersecting
exactly in x. If G has an x-flower of order k + 1, then x should be in every tree deletion
set of weight at most k as otherwise we would need at least k + 1 vertices to hit all cycles
passing through x. Thus the following reduction rule is safe.
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I Reduction Rule 4. Let (G,w, k) be an instance of wTDS. If G has an x-flower of order
at least k + 1, then remove x and decrease the parameter k by the weight of x. The resulting
instance is (G \ {x}, w|V (G)\{x}, k − w(x)).

The following theorem allows us to apply Reduction Rule 4 exhaustively in polynomial
time. A version of the theorem appears also in [2], but the version given in [22] is significantly
more powerful.

I Theorem 3 (Thomassé [22]). Let G be a multigraph and x be a vertex of G without a self
loop. Then in polynomial time we can find an x-flower of order k + 1 or, if such an x-flower
does not exist, a set of vertices Z ⊆ V (G) \ {x} of size at most 2k intersecting every cycle
containing x.

I Reduction Rule 5. Let (G,w, k) be an instance of wTDS. If v is a vertex such that
w(v) > k + 1, then let w(v) = k + 1.

An instance (G,w, k) of wTDS is called semi-reduced if none of the Reduction Rules 1–5
can be applied. By Observation 2 such an instance is either connected or the total weight of
all vertices is at most 2k and hence we have a kernel. Therefore, for the rest of the paper we
assume that the instance is connected.

I Lemma 4 (?). If (G,w, k) is an instance of wTDS reduced with respect to Reduction
Rule 5, then there is an equivalent instance (G′, k) of Tree Deletion Set such that
|V (G′)| ≤ (k + 1)|V (G)| and |E(G′)| ≤ |E(G)|+ |V (G′)|.

I Theorem 5 (Bafna et al. [1]). There is an O(min{|E(G)| log |V (G)|, |V (G)|2}) time al-
gorithm that given a graph G that admits a feedback vertex set of size at most k outputs a
feedback vertex set of G of size at most 2k.

3.2 A structural decomposition
In this subsection we decompose an instance (G,w, k) of wTDS to an equivalent instance
(G′, w′, k′) where V (G′) is partitioned into three sets B, T , and I, such that the size of B
and T is polynomial in k and I is an independent set. In particular we obtain the following
result.

I Lemma 6. There is a polynomial time algorithm that given a semi-reduced instance
(G,w, k) of wTDS either correctly decides that (G,w, k) is a no-instance or outputs an
equivalent instance (G′, w′, k′) and a partition of V (G′) into sets B, T , and I such that
(i) |B| ≤ 8k2 + 2k,
(ii) T induces a forest and |T | ≤ 240k4 + 272k3 + 65k2 − 19k − 7,
(iii) I is an independent set, and
(iv) for every v ∈ I, NG′(v) ⊆ B, |NG′(v)| ≤ 2k + 1, and NG′(v) is a double clique.

For an example of the structure of the graph G′ obtained from Lemma 6, see Figure 1.
We split the proof of this lemma into several auxiliary lemmata. We start by identifying

the set B.

I Lemma 7. There is a polynomial time algorithm that given a semi-reduced instance
(G,w, k) of wTDS either correctly decides that (G,w, k) is a no-instance or finds two sets F
and Q̂ such that, denoting B = F ∪ Q̂, the following holds.
(i) F is a feedback vertex set of G.
(ii) Each connected component of G \B has at most 2 neighbors in Q̂.
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v

N(v)

I

B

T

N(H)

H

. . .. . .

Figure 1 The vertex set of the graph G′ is partitioned into a set B, a set T where every connected
component H of T is a tree, and a set I. The set I induces an independent set and for every vertex
v ∈ I, NG′(v) ⊆ B and NG′(v) induces a double clique.

(iii) For every connected component H ∈ C(G \B) and every vertex y ∈ B, |NG(y)∩H| ≤ 1,
that is, every vertex y of F and every vertex y of Q̂ have at most one neighbor in every
connected component H of G \B.

(iv) |B| ≤ 8k2 + 2k.

Proof. First notice that every tree deletion set of G of weight at most k is also a feedback
vertex set of G of size at most k in the underlying non-weighted graph. Thus, by applying
Theorem 5 we may find in polynomial time a feedback vertex set F of G. If |F | > 2k, then
output NO. Otherwise, |F | ≤ 2k.

As the instance (G,w, k) is semi-reduced, Reduction Rule 4 is not applicable, and G does
not contain an x-flower of order k+ 1 for any x ∈ F . Therefore, from Theorem 3, we get that
for every x ∈ F we can find in polynomial time a set Qx ⊆ V (G) \ {x} intersecting every
cycle that goes through x in G and such that |Qx| ≤ 2k. Let Q =

⋃
x∈F Q

x.
Let C(G \ F ) = {H1, H2, . . . ,Hl} and note that, as F is a feedback vertex set of G, each

G[Hi] is a tree. From now on, without loss of generality we will assume that each G[Hi],
i ∈ [l], is rooted at some vertex vi ∈ Hi.

Let Qi = Hi ∩Q, i ∈ [l]. In other words, Qi denotes the set of vertices of Hi that are
also vertices of Q, i ∈ [l]. Let also Q̂i = LCA-closure(Qi), that is, let Q̂i denote the least
common ancestor-closure of the set Qi in the tree G[Hi]. Finally, let Q̂ =

⋃
i∈[l] Q̂i and note

that Q̂ ∩ F = ∅.
Let us now prove that F and Q̂ have the claimed properties. First of all, F is a feedback

vertex set by construction, proving (i). Second, since for each x in F we have |Qx| ≤ 2k, we
have |Q| ≤ 4k2, and from Lemma 1 we get that |Q̂| = |

⋃
i∈[l] Q̂i| =

∑
i∈[l] |Q̂i| ≤ 2

∑
i∈l |Qi| ≤

2|Q| ≤ 8k2. Together with |F | ≤ 2k this proves (iv). Third, from the construction of Q̂ and
from Lemma 1 we get the property (ii).

Let us now prove (iii). Let y ∈ B and H ∈ C(G \ B) and assume to the contrary that
|NG(y) ∩H| ≥ 2. Then, as G[H] is connected, the graph G[H ∪ {y}] contains a cycle that
goes through y. If y ∈ F , we get a contradiction to the facts that G[H ∪ {y}] is a subgraph
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of G \ Qy and the set Qy intersects every cycle that goes through y. If y ∈ Q̂, we get a
contradiction, since G[H ∪ {y}] is a subgraph of G \ F (recall that Q̂ ∩ F = ∅) and G \ F is
acyclic. J

The next lemma shows that if B is as in the previous lemma, then the size of connected
components in the rest of the graph is bounded.

I Lemma 8 (?). If (G,w, k) and B are as in Lemma 7 and H is a connected component
of G \B, then |H| ≤ 12k + 7.

Let x, y be two vertices of B. We say that the pair {x, y} is in P≤k+1 if there are at most
k + 1 connected components H of G \B with {x, y} ⊆ NG(H) and that {x, y} is in P≥k+2

otherwise. Now we add to G a double edge between every pair in P≥k+2 to obtain the
graph Ĝ. The next lemma shows that the resulting instance is equivalent to the original one.

I Lemma 9. The instance (Ĝ, w, k), where Ĝ is as defined above, is equivalent to (G,w, k).

Proof. Let {x, y} ∈ P≥k+2. Notice that each connected component H of G \ B with
{x, y} ⊆ NG(H) provides a separate path between x and y. Observe then that if neither x
nor y belong to a tree deletion set D of G we need at least k + 1 vertices to hit all
the cycles, since otherwise there are at least two components H1, H2 ∈ C(G \ B) with
{x, y} ⊆ (NG(H1) ∩ NG(H2)) and (H1 ∪ H2) ∩ D = ∅ and thus the graph induced by
H1 ∪H2 ∪ {y, y′} contains a cycle. This implies that (G,w, k) is a yes-instance if and only if
at least one of the vertices x and y is contained in every tree deletion set of G of weight k. J

The following lemma shows that there are only few connected components of G\B having
a neighborhood that is not a double clique in Ĝ.

I Lemma 10. If (G,w, k) and B are as in Lemma 7 and Ĝ as defined above, then there is
a set CT ⊆ C(G \B) such that
(i) |CT | ≤ 20k3 + 11k2 − k − 1,
(ii) for every H in C(G\B)\CT , we have NG(H) is a double clique in Ĝ and |NG(H)∩Q| ≤ 1.

Proof. For x, y ∈ B we denote S(x, y) = {H ∈ C(G \ B) | {x, y} ⊆ NG(H)}. Let us set
CT =

⋃
{x,y}∈P≤k+1 S(x, y). Let us now assume that there is H in C(G \ B) \ CT , and two

vertices x and y in NG(H) that are not joined by a double edge. By construction of the
graph Ĝ, this implies that {x, y} ∈ P≤k+1. But this implies that H is in CT , a contradiction.
Furthermore, for every x, y ∈ Q̂ we have |S(x, y)| ≤ 1 as otherwise we would have a cycle in
G \ F and F is a feedback vertex set. Hence CT satisfies (ii). It remains to prove (i).

Let us first mention that it is easy to see that CT is of polynomial size. Indeed, we have
|CT | = |

⋃
{x,y}∈P≤k+1 S(x, y)| ≤ |B|2(k + 1) = O(k5). For the purpose of the more precise

size bound let us distinguish three subsets of CT :

T FF =
⋃
{x,y}⊆F∧{x,y}∈P≤k+1

S(x, y)

T QQ =
⋃
{x,y}⊆Q̂∧{x,y}∈P≤k+1

S(x, y)

T FQ =
(⋃

x∈F∧y∈Q̂∧{x,y}∈P≤k+1
S(x, y)

)
\ T QQ

Obviously, CT ⊆ (T FF ∪ T QQ ∪ T FQ). Hence, to bound the size of CT it is enough to
bound the sizes of T FF , T QQ, and T FQ. Note that for every {x, y} ∈ P≤k+1 we have
|S(x, y)| ≤ k + 1. It follows that |T FF | ≤

(|F |
2
)
(k + 1) ≤

(2k
2
)
(k + 1) = 2k3 + k2 − k.
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Next we claim that |T QQ| ≤ |Q̂| − 1 ≤ 8k2 − 1. For every x, y ∈ Q̂ we have |S(x, y)| ≤ 1
as otherwise we would have a cycle in G \ F and F is a feedback vertex set. Let AQ be the
graph with vertex set Q̂ where two vertices in Q̂ are connected by an edge if and only if
they are the neighbors of a component H ∈ T QQ in Q̂. Hence, the number of edges of AQ
equals |T QQ|. We now work towards showing that AQ is a forest. Indeed, assume to the
contrary that there exists a cycle in AQ. Then it is easy to see that we may find a cycle in
the graph Ĥ induced by the components in T QQ which correspond to the edges of the cycle
in AQ and their neighborhood in Q̂. Recall that Q̂ ∩ F = ∅ and therefore Ĥ is a subgraph
of G \ F . This contradicts the fact that F is a feedback vertex set of G. Hence, AQ is a
forest and the claim follows.

For the upper bound on T FQ, for every x ∈ F we partition the set Q̂ into two sets R≤1
x

and R≥2
x in the following way.

R≤1
x = {y ∈ Q̂ | there is at most 1 component H ∈ T FQ such that {x, y} ⊆ NG(H)}

R≥2
x = {y ∈ Q̂ | {x, y} ∈ P≤k+1 and there exist at least two distinct components

H1, H2 ∈ T FQ such that {x, y} ⊆ NG(H1) ∩NG(H2)}.

Observe that |T FQ| ≤
∑
x∈F

(
|R≤1
x |+ |R≥2

x |(k + 1)
)
and for every x ∈ F , it trivially holds

that |R≤1
x | ≤ |Q̂| ≤ 8k2.

Moreover, we claim that for every x ∈ F , |R≥2
x | ≤ k. Indeed, assume to the contrary that

|R≥2
x | ≥ k + 1 for some x ∈ F . Then there exist k + 1 vertices yi ∈ Q̂, i ∈ [k + 1], such that

for every i there exist two connected components Hi
1 and Hi

2 in T FQ ⊆ C(G \B) \ T QQ such
that {x, y} ⊆ NG(Hi

1) ∩NG(Hi
2). This implies that the graph induced by the vertex x, the

vertices yi, i ∈ [k + 1], and the components Hi
1 and Hi

2, i ∈ [k + 1], contains an x-flower of
order k + 1 (notice that, as none of the graphs belong to T QQ, they are pairwise disjoint).
This is a contradiction to the fact that G is semi-reduced. Therefore, for every x ∈ F we
have |R≥2

x | ≤ k.
Alltogether, we have |T FQ| ≤

∑
x∈F

(
8k2 + k(k + 1)

)
≤ 18k3 + 2k2 and |CT | ≤ |T FF |+

|T QQ|+|T FQ| ≤ (2k3 +k2−k)+(8k2−1)+(18k3 +2k2) = 20k3 +11k2−k−1 proving (i). J

Let us denote T =
⋃
H∈CT

H. Note that by the properties of CT we have C(Ĝ\ (B∪T )) =
C(G \B) \ CT . Further, by Lemma 8 we have |T | ≤ |CT |(12k + 7) and, hence, by Lemma 10,
|T | ≤ (20k3 + 11k2 − k − 1)(12k + 7) = 240k4 + 272k3 + 65k2 − 19k − 7.

We now prove that the components of C(G \ B) that are not in CT behave as single
vertices with respect to tree deletion sets.

I Lemma 11 (?). If there exists a tree deletion set S of Ĝ of weight at most k then there
exists a tree deletion set Ŝ of Ĝ of weight at most k such that for every H ∈ C(Ĝ \ (B ∪ T )),
either H ⊆ Ŝ or H ∩ Ŝ = ∅.

Now, let G′ be the graph obtained from Ĝ after contracting every connected component H
of Ĝ \ (B ∪ T ) into a single vertex vH and setting w′(vH) =

∑
v∈H w(v) and w′(v) = w(v)

for every v ∈ (B ∪ T ). We also define I to be the set V (G′) \ (B ∪ T ). We now prove that
such a contraction does not affect the instance.

I Lemma 12 (?). If Ĝ, G′, and w′ are as defined above, then the instances (Ĝ, w, k) and
(G′, w′, k) are equivalent.

Lemma 6 now follows directly from Lemmata 7–12.
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I Remark. While it might be tempting to say that among a pair of vertices in P≥k+2 a
solution must remove exactly one, this is not the case. Though, clearly, some of the common
neighbors of the pair remain untouched, they might be connected to the rest of the graph
through other vertices of B. Hence it might be the case that both vertices of the pair are
removed.

3.3 Results on Linear Equations
I Lemma 13. Let F be a field. For every matrix M ∈ Fm×n and positive integer k, there
exists a submatrix M ′ ∈ Fm′×n of M , where m′ ≤ n(k + 1), such that for every x ∈ Fn with
dH(M ′ · xT ,0m′) ≤ k, dH(M · xT ,0m) = dH(M ′ · xT ,0m′). Furthermore, the matrix M ′
can be computed in time O(m · nω−1k), where ω is the matrix multiplication exponent
(ω < 2.373 [24]), assuming that the field operations take a constant time.

Proof. In order to identify M ′ we identify j0 + 1 ≤ k + 1 (non-empty) submatrices
B0, B1, . . . , Bj0 of M , each having at most n rows, in the following way: First, let B0
be a minimal submatrix of M whose rows span all the rows of M , that is, let B0 be a base
of the vector space generated by the rows of M , and let also M0 be the submatrix obtained
from M after removing the rows of B0. We identify the rest of the matrices inductively as
follows: For every i ∈ [k], if Mi−1 is not the empty matrix we let Bi be a minimal submatrix
of Mi−1 whose rows span all the rows of Mi−1 and finally we let Mi be the matrix occurring
from Mi−1 after removing the rows of Bi.

We now define the submatrixM ′ ofM . Let j0 ≤ k be the greatest integer for whichMj0−1
is not the empty matrix. Let M ′ be the matrix consisting of the union of the rows of the
(non-empty) matrices B0 and Bi, i ∈ [j0]. As the rank of the matrices M , Mi, i ∈ [j0], is
upper bounded by n, the matrices B0, Bi, i ∈ [j0], have at most n rows each, and thereforeM ′
has at most n(j0 + 1) ≤ n(k + 1) rows. Observe that if j0 < k then the union of the rows
of the non-empty matrices B0, Bi, i ∈ [j0], contains all the rows of M and thus we may
assume that M ′ = M and the lemma trivially holds. Hence, it remains to prove the lemma
for the case where j0 = k, and therefore M ′ consists of the union of the matrices B0, Bi,
i ∈ [k]. As it always holds that dH(M · xT ,0) ≥ dH(M ′ · xT ,0) it is enough to prove that
for every x ∈ Fn for which dH(M ′ · xT ,0) ≤ k, dH(M · xT ,0) ≤ dH(M ′ · xT ,0). Thus, it
is enough to prove that for every row r of the matrix M ′′ obtained from M after removing
the rows of M ′, it holds that dH(r · xT ,0) = 0. Towards this goal let x ∈ Fn be a vector
such that dH(M ′ · xT ,0) ≤ k. From the Pigeonhole Principle there exists an i0 such that
dH(Bi0 · xT ,0) = 0, that is, if r1, r2, . . . , r|Bi0 | are the rows of Bi0 then rj · xT = 0, for every
j ∈ [|Bi0 |]. Recall however that the row r of M ′′ is spanned by the rows r1, r2, . . . , r|Bi0 |
of Bi0 . Therefore, there exist λj ∈ F, j ∈ [|Bi0 |], such that r =

∑
j∈[|Bi0 |]

λjrj . It follows
that r · xT =

∑
j∈[|Bi0 |]

λj(rj · xT ) = 0 and therefore dH(r · xT ,0) = 0. This implies that
dH(M · xT ,0) ≤ dH(M ′ · xT ,0). Finally, for a rectangular matrix of size d× r, d ≤ r, Ibarra
et al. [12] give an algorithm that computes a maximal independent set of rows (a row basis)
in O(dω−1r) time. By running this algorithm k + 1 times we can find the matrix M ′ in
O(mnω−1k) time and this completes the proof of the lemma. J

I Lemma 14. Let F be a field. There exists an algorithm that given a set S of linear equations
over F on n variables and an integer k outputs a set S ′ ⊆ S of at most (n+ 1)(k + 1) linear
equations over F such that any assignment of the variables that violates at most k linear
equations of S ′ satisfies all the linear equations of S \ S ′. Moreover, the running time of the
algorithm is O(|S|nω−1k), assuming that the field operations take a constant time.
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Proof. Let x1, x2, . . . , xn denote the n variables and αij denote the coefficient of xj in
the i-th linear equation of S, i ∈ [|S|], j ∈ [n]. Let also αi(n+1) denote the constant term
of the i-th linear equation of S. In other words, the i-th equation of S is denoted as
αi1x1 + αi2x2 + · · ·+ αinxn + αi(n+1) = 0. Finally, let M be the matrix where the j-element
of the i-th row is αij , i ∈ [|S|], j ∈ [n+ 1]. From Lemma 13, it follows that for every positive
integer k there exists a submatrixM ′ ofM with at most (n+1)(k+1) rows and n+1 columns
such that for every x ∈ Fn+1 for which dH(M ′ · xT ,0) ≤ k, dH(M · xT ,0) = dH(M ′ · xT ,0)
and M ′ can be computed in time O(|S|nω−1k). Let S ′ be the set of linear equations that
correspond to the rows of M ′. Let then xi = βi, βi ∈ F, i ∈ [n], be an assignment that does
not satisfy at most k of the equations of S ′. This implies that dH(M ′ · z,0) ≤ k, where
z = (β1, β2, . . . , βn, 1)T . Again, from Lemma 13, we get that dH(M · z,0) = dH(M ′ · z,0).
Thus, the above assignment satisfies all the linear equations of S \ S ′. J

3.4 The Main Theorem
In this subsection by combining the structural decomposition of Subsection 3.2 and Lemma 14
from Subsection 3.3 we obtain a kernel for wTDS of size O(k4).

I Theorem 15. wTDS admits a kernel of size O(k4) and O(k4 log k) bits.

Proof. Let (G,w, k) be an instance of wTDS. Without loss of generality we may assume that
it is semi-reduced, G is connected, and that, from Lemma 6, V (G) can be partitioned into
three sets B, T , and I satisfying the conditions of Lemma 6. Note that, as G is connected,
every vertex of I has at least one neighbor in B. We construct an instance (G′, w′, k) of
wTDS in the following way. Let p be a prime number such that |B| < p < 2|B|. Such a prime
number exists by a Bertrand’s postulate (proved by Chebyshev in 1850). Let F = GF(p),
that is, the Galois field of order p. It takes at most O(|B|2) = O(k4) time to find p and the
multiplicative inverses in F.

Let I = {vi | i ∈ [|I|]} andB = {uj | j ∈ [|B|]}. We assign an F-variable xj to uj , j ∈ [|B|],
and a linear equation li over F to vi, i ∈ [|I|], where li is the equation

∑
j∈[|B|] αijxj − 1 = 0

and αij = 1 if uj ∈ NG(vi) and 0 otherwise. Let L = {li | i ∈ [|I|]} and L′ be the subset of L
obtained from Lemma 14. Let also I ′ = {vp ∈ I | lp ∈ L′} and G′ = G[B ∪ T ∪ I ′]. Finally,
let w′ = w|B∪T∪I′ . We now prove that (G′, w′, k) is equivalent to (G,w, k).

We first prove that if (G,w, k) is a yes-instance then so is (G′, w′, k). Let S be a tree
deletion set of G of weight at most k. Then G \ S is a tree and, as for every vertex v ∈ I \ S,
NG(v) is a double clique, v has degree exactly 1 in G \S. Therefore, the graph obtained from
G \ S after removing (I \ I ′) is still a tree. This implies that S \ (I \ I ′) is a tree deletion set
of G′ of weight at most k and (G′, w′, k) is a yes-instance.

Let now (G′, w′, k) be a yes-instance and S be a tree deletion set of G′ of weight at
most k. We claim that there exist at most k vertices in I ′ whose neighborhood lies entirely
in S. Indeed, assume to the contrary that there exist at least k + 1 vertices of I ′ whose
neighborhood lies entirely in S. Let J be the set of those vertices. Notice that for every
vertex v ∈ I ′, if NG′(v) ⊆ S, then either v ∈ S or I ′ \ {v} ⊆ S. Notice that if J ⊆ S, then S
has weight at least k + 1, a contradiction. Therefore, there exists a vertex u ∈ J that is
not contained in S. Then I ′ \ {u} ⊆ S. Moreover, recall that u has at least one neighbor z
in B and from the hypothesis z is contained in S. Therefore (I ′ \ {u}) ∪ {z} ⊆ S. As
|I ′| ≥ |J | = k + 1, it follows that |I ′ \ {u}| ≥ k. Furthermore, recall that B ∩ I ′ = ∅. Thus,
|S| ≥ k+ 1, a contradiction to the fact that S has weight at most k. Therefore, there exist at
most k vertices of I ′ whose neighborhood is contained entirely in S. For every j ∈ [|B|], let
xj = βj , where βj = 0 if uj ∈ S and 1 otherwise. Then there exist at most k linear equations



A.C. Giannopoulou, D. Lokshtanov, S. Saurabh, and O. Suchý 95

in L′ which are not satisfied by the above assignment. However, from the choice of L′ all
the linear equations in L \ L′ are satisfied and therefore, for every vertex u in I \ I ′ we have
|NG(u) \S| ≡ 1 (mod p). Since p > |B| this implies that u has exactly one neighbor in G \S.
Thus G \ S is a tree and hence, S is a tree deletion set of G as well.

Notice that V (G′) = B ∪ T ∪ I ′, where |I ′| ≤ 8k3 + 10k2 + 3k + 1 (Lemma 14) and
therefore |V (G′)| = O(k4). It is also easy to see that |E(G′)| = O(k4). Indeed, notice first
that as the set I ′ is an independent set there are no edges between its vertices. Moreover,
from Lemma 6 there are no edges between the vertices of the set I ′ and the set T . Observe
that, from the construction of I and subsequently of I ′, Lemma 6 implies that every vertex
of I ′ has at most 2k + 2 neighbors in B. As |I ′| ≤ 8k3 + 10k2 + 3k + 1 there exist O(k4)
edges between the vertices of I ′ and the vertices of B. Notice that from (2) of Lemma 6, T
induces a forest and thus there exist at most O(k4) edges between its vertices. Moreover,
from (1) of Lemma 6, again there exist O(k4) edges between the vertices of B. It remains to
show that there exist O(k4) edges with one endpoint in B and one endpoint in T . Recall
first that every connected component has at most 2 neighbors in Q̂. Therefore, there exist
at most 2k + 2 edges between every connected component of CT and B. Moreover, from
Lemma 10 we obtain that CT contains O(k3) connected components. Therefore, there exist
O(k4) edges with one endpoint in B and one endpoint in T . Thus, wTDS has a kernel of
O(k4) vertices and edges. Finally, from Reduction Rule 5, the weight of every vertex is upper
bounded by k + 1 and thus, it can be encoded using log(k + 1) bits resulting to a kernel of
wTDS with O(k4 log k) bits. J

From Lemma 4 we immediately get the following corollary.

I Corollary 16. Tree Deletion Set has a kernel with O(k5) vertices and edges.
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