7 research outputs found

    Influence of preparation conditions on acyclovir-loaded poly-d,l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability

    No full text
    Purpose. The evaluation of nanosphere colloidal suspensions containing acyclovir as potential ophthalmic drug delivery systems was carried out. The influence of polymer molecular weight and type and concentration of various surfactants on nanosphere properties was studied. The ocular pharmacokinetics of acyclovir- loaded nanoparticles was evaluated in vivo and compared with an aqueous suspension of the free drug. Methods. Nanospheres were made up of poly- d, l- lactic acid ( PLA). The colloidal suspension was obtained by a nanoprecipitation process. The surface properties of PLA nanospheres were changed by the incorporation of pegylated 1,2- distearoyl- 3- phosphatidylethanolamine. The mean size and zeta potential of the nanospheres were determined by light scattering analysis. The acyclovir loading capacity and release were also determined. In vivo experiments were carried out on male New Zealand rabbits. The ocular tolerability of PLA nanospheres was evaluated by a modified Draize test. The aqueous humor acyclovir levels were monitored for 6 h to determine the drug's ocular bioavailability for the various formulations. Results. A reduction of the mean size and a decrease of the absolute zeta potential of PLA nanospheres resulted from increasing the surfactant concentration. The higher the polymer molecular weight, the smaller the nanosphere mean size. PEG- coated and uncoated PLA nanospheres showed a sustained acyclovir release and were highly tolerated by the eye. Both types of PLA nanospheres were able to increase the aqueous levels of acyclovir and to improve the pharmacokinetics profile, but the efficacy of the PEG- coated nanospheres was significantly higher than that of the simple PLA ones. Conclusions. PEG- coated PLA nanospheres can be proposed as a potential ophthalmic delivery system for the treatment of ocular viral infections

    Preparation of Intravenous Stealthy Acyclovir Nanoparticles with Increased Mean Residence Time

    No full text
    A major cause of thromboplebitis, during acyclovir (ACV) parenteral administration is the high pH of its reconstituted solution (pH 11). Its plasma half life is 2.5 h, requiring repeated administration which may result in excess of drug solubility leading to possible renal damage and acute renal failure. The present study reports the efficiency of stealthy ACV nanoparticles (NPs) to increase the mean residence time of the drug 29 times. It caused a marked decrease in thrombophlebitis when injected into rabbit’s ear vein. The polymers used were (Poly lactic acid, polylactic-co-glycolic (PLGA) 85/15, PLGA 75/25, PLGA 50/50). Particles were evaluated for their encapsulation efficiency, morphology, particle size and size distribution, zeta potential, and in vitro drug release. Small NPs (280–300 nm) with 60% drug release after 48 h were obtained. Among the block copolymer used, poloxamer 407 was of superior coating properties with a coat thickness in the range of 1.5–8.3 nm and a decreased surface charge

    Temporal Control over Cellular Targeting through Hybridization of Folate-targeted Dendrimers and PEG-PLA Nanoparticles

    No full text
    Polymeric nanoparticles (NPs) and dendrimers are two major classes of nanomaterials that have demonstrated great potential for targeted drug delivery. However, their targeting efficacy has not yet met clinical needs largely because of a lack of control over their targeting kinetics, which often results in rapid clearance and off-target drug delivery. To address this issue, we have designed a novel hybrid NP (nanohybrid) platform that allows targeting kinetics to be effectively controlled through hybridization of targeted dendrimers with polymeric NPs. Folate (FA)-targeted generation 4 poly(amidoamine) dendrimers were encapsulated into poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) NPs using a double emulsion method, forming nanohybrids with a uniform size (~100 nm in diameter) at high encapsulation efficiencies (69–85%). Targeted dendrimers encapsulated within the NPs selectively interacted with FA receptor (FR)-overexpressing KB cells upon release in a temporally controlled manner. The targeting kinetics of the nanohybrids were modulated using three different molecular weights (MW) of the PLA block (23, 30, and 45 kDa). The release rates of the dendrimers from the nanohybrids were inversely proportional to the MW of the PLA block, which dictated their binding and internalization kinetics with KB cells. Our results provide evidence that selective cellular interactions can be kinetically controlled by the nanohybrid design, which can potentially enhance targeting efficacy of nanocarriers
    corecore