228 research outputs found

    Humor appreciation of captionless cartoons in obsessive-compulsive disorder

    Get PDF
    Background: It seems that the core neural regions and cognitive processes implicated in obsessive-compulsive disorder (OCD) pathophysiology may overlap with those involved in humor appreciation. However, to date, there have been no studies that have explored humor appreciation in OCD. The purpose of the present work was to investigate humor appreciation in a group of patients with OCD.Methods: We examined 25 patients with OCD and 25 healthy controls, matched by age, education, and gender. We administered Penn's Humor Appreciation Test (PHAT), a computerized test comprising captionless cartoons by Mordillo. Each set of stimuli consisted of two almost identical drawings, one of which was funny due to the alteration of a detail in the cartoon, whereas the other was not funny. Severity of psychopathology was evaluated with the Yale-Brown Obsessive Compulsive Scale (Y-BOCS).Results: No significant effect for group, gender or group × gender interaction was found on the PHAT scores. In OCD patients, humor appreciation was not significantly associated with age of onset, duration of illness, and obsessions, but correlated significantly with compulsions.Conclusions: Humor appreciation, based on captionless cartoons in OCD, does not seem to be deficient compared to healthy subjects but may be related to illness characteristics. © 2011 Bozikas et al; licensee BioMed Central Ltd

    Cognitive disorders in patients with chronic kidney disease: specificities of clinical assessment

    Get PDF
    Neurocognitive disorders are frequent among chronic kidney disease (CKD) patients. Identifying and characterizing cognitive impairment (CI) can help to assess the ability of adherence to CKD risk reduction strategy, identify potentially reversible causes of cognitive decline, modify pharmacotherapy, educate the patient and caregiver and provide appropriate patient and caregiver support. Numerous factors are associated with the development and progression of CI in CKD patients and various conditions can influence the results of cognitive assessment in these patients. Here we review clinical warning signs that should lead to cognitive screening; conditions frequent in CKD at risk to interfere with cognitive testing or performance, including specificities of cognitive assessment in dialysis patients or after kidney transplantation; and available tests for screening and observed cognitive patterns in CKD patients

    A microbial supply chain for production of the anti-cancer drug vinblastine

    Get PDF
    International audienceAbstract Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine 1 . As MIAs are difficult to chemically synthesize, the world’s supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus , which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale 2,3 . Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues

    Pixelated full-colour small molecule semiconductor devices towards artificial retinas

    Get PDF
    Opto-stimulation of semiconductor-biointerfaces provides efficient pathways towards eliciting neural activity through selective spectral excitation. In visual prosthesis, tri-colour stimulation capability is the key to restoring full-colour vision. Here we report on investigation of organic photoactive π-conjugated donor–acceptor small molecules based on triphenylamine whose absorption spectra are similar to those of the photoreceptors of the human eye. Photoactive device fabrication and characterisation towards full colour, pixelated retinal prosthesis based on inkjet printing of these molecules is demonstrated, with round pixels reaching 25 microns in diameter. Photo-response is studied via interfacing with biological electrolyte solution and using long-pulse, narrow-band excitation. Both photo-voltage and photo-current responses in the devices with a ZnO hole-blocking interlayer show clear signatures of capacitive charging at the electrolyte/device interface, also demonstrating spectral selectivity comparable to that of human eye’ cones and rods

    Co-Regulation of the DAF-16 Target Gene, cyp-35B1/dod-13, by HSF-1 in C. elegans Dauer Larvae and daf-2 Insulin Pathway Mutants

    Get PDF
    Insulin/IGF-I-like signaling (IIS) has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans

    A Combination of Genomic Approaches Reveals the Role of FOXO1a in Regulating an Oxidative Stress Response Pathway

    Get PDF
    Background: While many of the phenotypic differences between human and chimpanzee may result from changes in gene regulation, only a handful of functionally important regulatory differences are currently known. As a first step towards identifying transcriptional pathways that have been remodeled in the human lineage, we focused on a transcription factor, FOXO1a, which we had previously found to be up-regulated in the human liver compared to that of three other primate species. We concentrated on this gene because of its known role in the regulation of metabolism and in longevity. Methodology: Using a combination of expression profiling following siRNA knockdown and chromatin immunoprecipitation in a human liver cell line, we identified eight novel direct transcriptional targets of FOXO1a. This set includes the gene for thioredoxin-interacting protein (TXNIP), the expression of which is directly repressed by FOXO1a. The thioredoxininteracting protein is known to inhibit the reducing activity of thioredoxin (TRX), thereby hindering the cellular response to oxidative stress and affecting life span. Conclusions: Our results provide an explanation for the repeated observations that differences in the regulation of FOXO transcription factors affect longevity. Moreover, we found that TXNIP is down-regulated in human compared to chimpanzee, consistent with the up-regulation of its direct repressor FOXO1a in humans, and with differences in longevity between th

    A Role for Drosophila dFoxO and dFoxO 5′UTR Internal Ribosomal Entry Sites during Fasting

    Get PDF
    One way animals may cope with nutrient deprivation is to broadly repress translation by inhibiting 5′-cap initiation. However, under these conditions specific proteins remain essential to survival during fasting. Such peptides may be translated through initiation at 5′UTR Internal Ribosome Entry Sites (IRES). Here we show that the Drosophila melanogaster Forkhead box type O (dFoxO) transcription factor is required for adult survival during fasting, and that the 5′UTR of dfoxO has the ability to initiate IRES-mediated translation in cell culture. Previous work has shown that insulin negatively regulates dFoxO through AKT-mediated phosphorylation while dFoxO itself induces transcription of the insulin receptor dInR, which also harbors IRES. Here we report that IRES-mediated translation of both dFoxO and dInR is activated in fasted Drosophila S2 cells at a time when cap-dependent translation is reduced. IRES mediated translation of dFoxO and dInR may be essential to ensure function and sensitivity of the insulin signaling pathway during fasting

    Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss

    Get PDF
    Mutations in PINK1 and PARK2 cause autosomal recessive parkinsonism, a neurodegenerative disorder that is characterized by the loss of dopaminergic neurons. To discover potential therapeutic pathways, we identified factors that genetically interact with Drosophila park and Pink1. We found that overexpression of the translation inhibitor Thor (4E-BP) can suppress all of the pathologic phenotypes, including degeneration of dopaminergic neurons in Drosophila. 4E-BP is activated in vivo by the TOR inhibitor rapamycin, which could potently suppress pathology in Pink1 and park mutants. Rapamycin also ameliorated mitochondrial defects in cells from individuals with PARK2 mutations. Recently, 4E-BP was shown to be inhibited by the most common cause of parkinsonism, dominant mutations in LRRK2. We also found that loss of the Drosophila LRRK2 homolog activated 4E-BP and was also able to suppress Pink1 and park pathology. Thus, in conjunction with recent findings, our results suggest that pharmacologic stimulation of 4E-BP activity may represent a viable therapeutic approach for multiple forms of parkinsonism
    corecore