135 research outputs found

    The use of digital image correlation in the biomechanical area: a review

    Get PDF
    This paper offers an overview of the potentialities and limitations of digital image correlation (DIC) as a technique for measuring displacements and strain in biomechanical applications. This review is mainly intended for biomechanists who are not yet familiar with DIC. This review includes over 150 papers and covers different dimensional scales, from the microscopic level (tissue level) up to macroscopic one (organ level). As DIC involves a high degree of computation, and of operator- dependent decisions, reliability of displacement and strain measurements by means of DIC cannot be taken for granted. Methodological problems and existing solutions are summarized and compared, whilst open issues are addressed. Topics addressed include: preparation methods for the speckle pattern on different tissues; software settings; systematic and random error associated with DIC measurement. Applications to hard and soft tissues at different dimensional scales are described and analyzed in terms of strengths and limitations. The potentialities and limitations of DIC are highlighted, also in comparison with other experimental techniques (strain gauges, other optical techniques, digital volume correlation) and numerical methods (finite element analysis), where synergies and complementarities are discussed. In order to provide an overview accessible to different scientists working in the field of biomechanics, this paper intentionally does not report details of the algorithms and codes used in the different studies

    In vitro studies of bone-cement interface and related work on cemented acetabular replacement

    Get PDF
    The lasting integrity of the bond between bone cement and bone defines the long-term stability of cemented acetabular replacements. Although several studies have been carried out on bone-cement interface at continuum level, micromechanics of the interface has been studied only recently for tensile and shear loading cases. Furthermore, the mechanical and microstructural behaviour of this interface is complex due to the variation in morphology and properties that can arise from a range of factors. In this work in vitro studies of the bone-cement interfacial behaviour under selected loading conditions were carried out using a range of experimental techniques. Damage development in cemented acetabular reconstructs was studied under a combined physiological loading block representative of routine activities in a saline environment. A custom-made environmental chamber was developed to allow testing of acetabular reconstructs in a wet condition for the first time and damage was monitored and detected by scanning at selected loading intervals using micro-focus computed tomography (μCT). Preliminary results showed that, as in dry cases, debonding at the bone-cement interface defined the failure of the cement fixation. However, the combination of mechanical loading and saline environment seems to affect the damage initiation site, drastically reducing the survival lives of the reconstructs. Interfacial behaviour of the bone-cement interface was studied under tensile, shear and mixed-mode loading conditions. Bone-cement coupons were first mechanically tested and then μCT imaged. The influence of the loading angle, the extent of the cement penetration and the failure mechanisms with regard to the loading mode on the interfacial behaviour were examined. Both mechanical testing and post failure morphologies seem to suggest an effect of the loading angle on the failure mechanism of the interface. The micromechanical performance of bone-cement interface under compression was also examined. The samples were tested in step-wise compression using a custom-made micromechanical loading stage within the μCT chamber, and the damage evolution with load was monitored. Results showed that load transfer in bone-cement interface occurred mainly in the bone-cement contact region, resulting in progressively developed deformation due to trabeculae bending and buckling. Compressive and fatigue behaviour of bovine cancellous bone and selected open-cell metallic foams were studied also, and their suitability as bone analogous materials for cemented biomechanical testing was investigated. Whilst the morphological parameters of the foams and the bone appear to be closer, the mechanical properties vary significantly between the foams and the bone. However, despite the apparent differences in their respective properties, the general deformation behaviour is similar across the bone and the foams. Multi-step fatigue tests were carried out to study the deformation behaviour under increasing compressive cyclic stresses. Optical and scanning electron microscopy (SEM) were used to characterise the microstructure of foams and bone prior to and post mechanical testing. The results showed that residual strain accumulation is the predominant driving force leading to failure of foams and bones. Although foams and bone fail by the same mechanism of cyclic creep, the deformation behaviour at the transient region of each step was different for both materials. Preliminary results of foam-cement interface performance under mixed-mode loading conditions are also presented.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Low-cycle full-field residual strains in cortical bone and their influence on tissue fracture evaluated via in situ stepwise and continuous X-ray computed tomography

    Get PDF
    As a composite material, the mechanical properties of bone are highly dependent on its hierarchical organisation, thus, macroscopic mechanical properties are dictated by local phenomena, such as microdamage resulting from repetitive cyclic loading of daily activities. Such microdamage is associated with plastic deformation and appears as a gradual accumulation of residual strains. The aim of this study is to investigate local residual strains in cortical bone tissue following compressive cyclic loading, using in situ X-ray computed tomography (XCT) and digital volume correlation (DVC) to provide a deeper insight on the three-dimensional (3D) relationship between residual strain accumulation, cortical bone microstructure and failure patterns. Through a progressive in situ XCT loading–unloading scheme, localisation of local residual strains was observed in highly compressed regions. In addition, a multi-scale in situ XCT cyclic test highlighted the differences on residual strain distribution at the microscale and tissue level, where high strains were observed in regions with the thinnest vascular canals and predicted the failure location following overloading. Finally, through a continuous in situ XCT compression test of cycled specimens, the full-field strain evolution and failure pattern indicated the reduced ability of bone to plastically deform after damage accumulation due to high number of cyclic loads. Altogether, the novel experimental methods employed in this study, combining high-resolution in situ XCT mechanics and DVC, showed a great potential to investigate 3D full-field residual strain development under repetitive loading and its complex interaction with bone microstructure, microdamage and fracture

    3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering

    Get PDF
    Injuries of bone and cartilage constitute important health issues costing the National Health Service billions of pounds annually, in the UK only. Moreover, these damages can become cause of disability and loss of function for the patients with associated social costs and diminished quality of life. The biomechanical properties of these two tissues are massively different from each other and they are not uniform within the same tissue due to the specific anatomic location and function. In this perspective, tissue engineering (TE) has emerged as a promising approach to address the complexities associated with bone and cartilage regeneration. Tissue engineering aims at developing temporary three-dimensional multicomponent constructs to promote the natural healing process. Biomaterials, such as hydrogels, are currently extensively studied for their ability to reproduce both the ideal 3D extracellular environment for tissue growth and to have adequate mechanical properties for load bearing. This review will focus on the use of two manufacturing techniques, namely electrospinning and 3D printing, that present promise in the fabrication of complex composite gels for cartilage and bone tissue engineering applications

    Evaluation of bone excision effects on a human skull model - I: Mechanical testing and digital image correlation.

    Get PDF
    The mechanisms of skull impact loading may change following surgical interventions such as the removal of bone lesions, but little is known about the consequences in the event of subsequent head trauma. We, therefore, prepared acrylonitrile butadiene styrene human skull models based on clinical computed tomography skull data using a three-dimensional printer. Six replicate physical skull models were tested, three with bone excisions and three without. A drop tower was used to simulate the impact sustained by falling backwards onto the occipital lobe region. The impacts were recorded with a high-speed camera, and the occipital strain response was determined by digital image correlation. Although the hole affected neither the magnitude nor the sequence of the fracture pattern, the digital image correlation analysis highlighted an increase in strain around the excised area (0.45%–16.4% of the principal strain). Our approach provides a novel method that could improve the quality of life for patients on many fronts, including protection against trauma, surgical advice, post-operative care, advice in litigation cases, as well as facilitating general biomechanical research in the area of trauma injuries
    • …
    corecore