9 research outputs found

    Electronic Couplings and Conversion Dynamics between Localized and Charge Transfer Excitations from Many-Body Green’s Functions Theory

    Get PDF
    We investigate the determination of electronic coupling between localized excitations (LEs) and charge-transfer (CT) excitations based on many-body Green’s functions theory in the GW approximation with the Bethe-Salpeter equation (GW-BSE). Using a small molecule dimer system, we first study the influence of different diabatization methods, as well as different model choices within GW-BSE, such as the self-energy models or different levels of self-consistency, and find that these choices affect the LE-CT couplings only minimally. We then consider a large-scale low-donor morphology formed from rubrene and fullerene and evaluate the LE-CT couplings based on coupled GW-BSE-molecular mechanics calculations. For these disordered systems of bulky molecules, we observe differences in the couplings based on the Edmiston-Ruedenberg diabatization compared to the more approximate Generalize Mulliken-Hush and fragment charge difference diabatization formalisms. In a kinetic model for the conversion between LE and CT states, these differences affect the details of state populations in an intermediate time scale but not the final populations.</p

    Electronic Excitations in Complex Molecular Environments: Many-Body Green's Functions Theory in VOTCA-XTP

    Get PDF
    Many-body Green's functions theory within the GW approximation and the Bethe-Salpeter Equation (BSE) is implemented in the open-source VOTCA-XTP software, aiming at the calculation of electronically excited states in complex molecular environments. Based on Gaussian-type atomic orbitals and making use of resolution of identify techniques, the code is designed specifically for non-periodic systems. Application to the small molecule reference set successfully validates the methodology and its implementation for a variety of excitation types covering an energy range from 2-8 eV in single molecules. Further, embedding each GW-BSE calculation into an atomistically resolved surrounding, typically obtained from Molecular Dynamics, accounts for effects originating from local fields and polarization. Using aqueous DNA as a prototypical system, different levels of electrostatic coupling between the regions in this GW-BSE/MM setup are demonstrated. Particular attention is paid to charge-transfer (CT) excitations in adenine base pairs. It is found that their energy is extremely sensitive to the specific environment and to polarization effects. The calculated redshift of the CT excitation energy compared to a nucelobase dimer treated in vacuum is of the order of 1 eV, which matches expectations from experimental data. Predicted lowest CT energies are below that of a single nucleobase excitation, indicating the possibility of an initial (fast) decay of such an UV excited state into a bi-nucleobase CT exciton. The results show that VOTCA-XTP's GW-BSE/MM is a powerful tool to study a wide range of types of electronic excitations in complex molecular environments

    Ab initio modeling of excitons: from perfect crystals to biomaterials

    No full text
    Excitons, or coupled electron-hole excitations, are important both for fundamental optical properties of materials as well as and for the functionality of materials in opto-electronic devices. Depending on the material they are created in, excitons can come in many forms, from Wannier–Mott excitons in inorganic semiconductors, to molecular Frenkel or bi-molecular charge-transfer excitons in disordered organic or biological heterostructures. This multitude of materials and exciton types poses tremendous challenges for ab initio modeling. Following a brief overview of typical ab initio techniques, we summarize our recent work based on Many-Body Green’s Functions Theory in the GW approximation and Bethe–Salpeter Equation (BSE) as a method applicable to a wide range of material classes from perfect crystals to disordered materials. In particular, we emphasize the current challenges of embedding this GW-BSE method into multi-method, mixed quantum-classical (QM/MM) models for organic materials and illustrate them with examples from organic photovoltaics and fluorescence spectroscopy. Our perspectives on future studies are also presented

    VOTCA

    No full text
    VOTCA-XTP is a library which allows you to calculate the electronic properties of organic materials.If you use this software, please cite it as below
    corecore