242 research outputs found

    Hydrochemical determination of source water contributions to Lake Lungo and Lake Ripasottile (central Italy)

    Get PDF
    Lake Lungo and Lake Ripasottile are two shallow (4-5 m) lakes located in the Rieti Basin, central Italy, that have been described previously as surface outcroppings of the groundwater table. In this work, the two lakes as well as springs and rivers that represent their potential source waters are characterized physio-chemically and isotopically, using a combination of environmental tracers. Temperature and pH were measured and water samples were analyzed for alkalinity, major ion concentration, and stable isotope (δ2H, δ18O, δ13C of dissolved inorganic carbon, and δ34S and δ18O of sulfate) composition. Chemical data were also investigated in terms of local meteorological data (air temperature, precipitation) to determine the sensitivity of lake parameters to changes in the surrounding environment. Groundwater represented by samples taken from Santa Susanna Spring was shown to be distinct with SO4 2- and Mg2+ content of 270 and 29 mg/L, respectively, and heavy sulfate isotopic composition (δ34S=15.2‰ and δ18O=10‰). Outflow from the Santa Susanna Spring enters Lake Ripasottile via a canal and both spring and lake water exhibits the same chemical distinctions and comparatively low seasonal variability. Major ion concentrations in Lake Lungo are similar to the Vicenna Riara Spring and are interpreted to represent the groundwater locally recharged within the plain. The δ13CDIC exhibit the same groupings as the other chemical parameters, providing supporting evidence of the source relationships. Lake Lungo exhibited exceptional ranges of δ13CDIC (±5‰) and δ2H, δ18O (±5 ‰ and ±7 ‰, respectively), attributed to sensitivity to seasonal changes. The hydrochemistry results, particularly major ion data, highlight how the two lakes, though geographically and morphologically similar, represent distinct hydrochemical facies. These data also show a different response in each lake to temperature and precipitation patterns in the basin that may be attributed to lake water retention time. The sensitivity of each lake to meteorological patterns can be used to understand the potential effects from long-term climate variability

    Soil microarthropod communities from Mediterranean forest ecosystems in Central Italy under different disturbances

    Get PDF
    The aim of this study is to assess soil quality in Mediterranean forests of Central Italy, from evergreen to deciduous, with different types of management (coppice vs. high forest vs. secondary old growth) and compaction impacts (machinery vs. recreational). Soil quality was evaluated studying soil microarthropod communities and applying a biological index (QBS-ar) based on the concept that the higher is the soil quality, the higher will be the number of microarthropod groups well adapted to the soil habitat. Our results confirm that hardwood soils are characterised by the highest biodiversity level among growth) and compaction impacts (machinery vs. recreational). terrestrial communities and by a well-structured and mature microarthropod community, which is typical of stable ecosystems (QBS value, >200). While silvicultural practices and forest composition do not seem to influence QBS-ar values or microarthropod community structure, the index is very efficient in detecting soil impacts (soil compaction due to logging activities). Several taxa (Protura, Diplura, Coleoptera adults, Pauropoda, Diplopoda, Symphyla, Chilopoda, Diptera larvae and Opiliones) react negatively to soil compaction and degradation (QBS value, <150). In particular, Protura, Diplura, Symphyla and Pauropoda, are taxonomic groups linked to undisturbed soil. This index could also be a useful tool in monitoring soil biodiversity in protected areas and in urban forestry to prevent the negative effects of trampling. QBS-ar is a candidate index for biomonitoring of soil microarthropod biodiversity across the landscape to provide guidance for the sustainable management of renewable resource and nature conservation

    Combination of pharmacotherapy and lidocaine analgesic block of the peripheral trigeminal branches for trigeminal neuralgia: a pilot study

    Get PDF
    Classical trigeminal neuralgia (CTN) is treated predominantly by pharmacotherapy but side effects and unsuccessful occurs. The current study was carried out to evaluate the therapeutic effect of combination of pharmacotherapy and lidocaine block. Thirteen patients with CTN managed with pharmacotherapy were recruited and assigned either to no additional treatment (Group I) or to additional analgesic block (Group II). The primary endpoint was the reduction in the frequency of pain episodes in a month assessed at 30 and 90 days. Comparisons of measurements of pain, general health and depression scales were secondary endpoints. The results from the follow-up visits at 30 and 90 days showed the Group II to have larger reduction in the frequency of pain and exhibited a bigger improvement in the scores of the pain, general health and depression scales. The results from this preliminary study suggest a clinical benefit of the combination of pharmacotherapy and lidocaine block

    The Longevity of Fruit Trees in Basilicata (Southern Italy): Implications for Agricultural Biodiversity Conservation

    Get PDF
    In the Mediterranean basin, agriculture and other forms of human land use have shaped the environment since ancient times. Intensive and extensive agricultural systems managed with a few cultured plant populations of improved varieties are a widespread reality in many Mediterranean countries. Despite this, historical cultural landscapes still exist in interior and less intensively managed rural areas. There, ancient fruit tree varieties have survived modern cultivation systems, preserving a unique genetic heritage. In this study, we mapped and characterized 106 living fruit trees of ancient varieties in the Basilicata region of southern Italy. Tree ages were determined through tree ring measurements and radiocarbon analyses. We uncovered some of the oldest scientifically dated fruit trees in the world. The oldest fruit species were olive (max age 680 +/- 57 years), mulberry (647 +/- 66 years), chestnut (636 +/- 66 years), and pear (467 +/- 89 years). These patriarchs hold a unique genetic resource; their preservation and genetic maintenance through agamic propagation are now promoted by the Lucan Agency for the Development and Innovation in Agriculture (ALSIA). Each tree also represents a hub for biodiversity conservation in agrarian ecosystems: their large architecture and time persistence guarantee ecological niches and micro-habitats suitable for flora and fauna species of conservation significance

    The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series

    Get PDF
    Understanding the factors controlling the expression of longevity in trees is still an outstanding challenge for tree biologists and forest ecologists. We gathered tree-ring data and literature for broadleaf deciduous (BD) temperate trees growing in closed-canopy old-growth (OG) forests in the Northern Hemisphere to explore the role of geographic patterns, climate variability, and growth rates on longevity. Our pan-continental analysis, covering 25 species from 12 genera, showed that 300–400 years can be considered a baseline threshold for maximum tree lifespan in many temperate deciduous forests. Maximum age varies greatly in relation to environmental features, even within the same species. Tree longevity is generally promoted by reduced growth rates across large genetic differences and environmental gradients. We argue that slower growth rates, and the associated smaller size, provide trees with an advantage against biotic and abiotic disturbance agents, supporting the idea that size, not age, is the main constraint to tree longevity. The oldest trees were living most of their life in subordinate canopy conditions and/or within primary forests in cool temperate environments and outside major storm tracks. Very old trees are thus characterized by slow growth and often live in forests with harsh site conditions and infrequent disturbance events that kill much of the trees. Temperature inversely controls the expression of longevity in mesophilous species (Fagus spp.), but its role in Quercus spp. is more complex and warrants further research in disturbance ecology. Biological, ecological, and historical drivers must be considered to understand the constraints imposed to longevity within different forest landscapes

    ANALISI DI LUNGO PERIODO DELLA TRASFORMAZIONE DEL PAESAGGIO FORESTALE NELL’AREA METROPOLITANA DI ROMA CAPITALE A SUPPORTO DELLA GOVERNANCE DEL TERRITORIO PER LA TRANSIZIONE ECOLOGICA

    Get PDF
    Restoring the forest ecosystem’s functionality is as an urgent action for biodiversity conservation and carbon mitigation as well as for achieving the 2030 Agenda of United Nations sustainability goals. By developing a landscape dynamics framework to guide future management and planning policies we characterised the historical trend of forest area changes from 1936 to 2010 in the Metropolitan City of Rome Capital (Italy). Remote sensing-based products and historical forest maps, coupled with landscape pattern metrics and fragmentation analysis have been implemented. Two main forest landscape dynamics were reconstructed: I) the increase of forest cover fragmentation in the lowland areas; (II) the rise in forest area by recently established forest in the interior sectors of the mountain landscape, mainly within protected areas. Results revealed the urgent need to establish new protected areas and rewilding spaces. The proposed framework can be used for testing the effectiveness of environmental planning and management in other forest landscapes to achieve the Agenda 2030 goals and EU 2030 Biodiversity Strategy
    • …
    corecore