34 research outputs found

    Geomorphology of the central Po Plain, Northern Italy

    Get PDF
    A micro-relief map (1:90,000 scale) and a geomorphological map (1:25,000 scale) of the central sector of the Po Plain (northern Italy) are presented. The geomorphological map represents fluvial and anthropogenic landforms as well as the distribution of the textures of superficial alluvial deposits. It resulted from the integration of different study methods, including remote sensing data analysis, field surveys and grain size analysis of superficial deposits. The micro-relief map was a fundamental tool for identifying many inconspicuous landforms. The geomorphological map can provide local authorities with useful information for correct territorial management and planning, in particular for seismic and flood hazard assessment

    Analysing stress field conditions of the Colima Volcanic Complex (Mexico) by integrating finite-element modelling (FEM) simulations and geological data

    Get PDF
    In recent decades, finite-element modelling (FEM) has become a very popular tool in volcanological studies and has even been used to describe complex system geometries by accounting for multiple reservoirs, topography, and het- erogeneous distribution of host rock mechanical properties. In spite of this, the influence of geological information on numerical simulations is still poorly considered. In this work, 2D FEM of the Colima Volcanic Complex (Mexico) is pro- vided by using the Linear Static Analysis (LISA) software in order to investigate the stress field conditions with increas- ingly detailed geological data. By integrating the published geophysical, volcanological, and petrological data, we mod- elled the stress field considering either one or two magma chambers connected to the surface via dykes or isolated (not connected) in the elastic host rocks (considered homoge- neous and non-homogeneous). We also introduced tectonic disturbance, considering the effects of direct faults bordering the Colima Rift and imposing an extensional far-field stress of 5 MPa. We ran the model using the gravity in calculations. Our results suggest that an appropriate set of geological data is of pivotal importance for obtaining reliable numerical out- puts, which can be considered a proxy for natural systems. Beside and beyond the importance of geological data in FEM simulations, the model runs using the complex feeding system geometry and tectonics show how the present-day Col- ima volcanic system can be considered in equilibrium from a stress state point of view, in agreement with the long-lasting open conduit dynamics that have lasted since 1913

    Geological map of the Tocomar Basin (Puna Plateau, NW Argentina): Implication for the geothermal system investigation

    Get PDF
    This paper presents a detailed geological map at the 1:20,000 scale of the Tocomar basin in the Central Puna (north-western Argentina), which extends over an area of about 80 km2 and displays the spatial distribution of the Quaternary deposits and the structures that cover the Ordovician basement and the Tertiary sedimentary and volcanic units. The new dataset includes litho-facies descriptions, stratigraphic and structural data and new 234U/230Th ages for travertine rocks. The new reconstructed stratigraphic framework, along with the structural analysis, has revealed the complex evolution of a small extensional basin including a period of prolonged volcanic activity with different eruptive centres and styles. The geological map improves the knowledge of the geology of the Tocomar basin and the local interplay between orogen-parallel thrusts and orogen-oblique fault systems. This contribution represents a fundamental support for in depth research and also for encouraging geothermal exploration and exploitation in the Puna Plateau regionFil: Filipovich, Ruben Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Groppelli, Gianluca. CNR Istituto di Geologia Ambientale e Geoingegneria; ItaliaFil: Ahumada, Maria Florencia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Aldega, Luca. UniversitĂ  degli Studi di Roma "La Sapienza"; ItaliaFil: Becchio, Raul Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Berardi, Gabriele. UniversitĂ  Roma Tre III; ItaliaFil: Bigi, Sabina. UniversitĂ  degli Studi di Roma "La Sapienza"; ItaliaFil: Caricchi. Chiara. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Corrado, Sveva. UniversitĂ  Roma Tre III; ItaliaFil: De Astis, Gianfilippo. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: De Benedetti, Arnaldo Angelo. UniversitĂ  Roma Tre III; ItaliaFil: Invernizzi, Chiara. Universita Degli Di Camerino; ItaliaFil: Norini, Gianluca. CNR Istituto di Geologia Ambientale e Geoingegneria; ItaliaFil: Soligo, Michele. UniversitĂ  Roma Tre III; ItaliaFil: Taviani, Sara. University of Milano-Bicocca; ItaliaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Giordano, Guido. CNR Istituto di Geologia Ambientale e Geoingegneria; Italia. UniversitĂ  Roma Tre III; Itali

    Petrophysical and mechanical rock property database of the Los Humeros and Acoculco geothermal fields (Mexico)

    Get PDF
    Petrophysical and rock mechanical properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining, are commonly used for the interpretation of geophysical data and the parameterization of numerical models and as thus are the basis for economic reservoir assessment. However, detailed information regarding these properties for each target horizon are often scarce, inconsistent or spread over multiple publications. Thus, subsurface models are often populated with generalized or assumed values resulting in high uncertainty. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to high variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as basis for a profound reservoir assessment and modelling. Within the scope of the GEMex project (EU-H2020, GA Nr. 727550), which aims to develop new transferable exploration and exploitation approaches for super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans Mexican Volcanic Belt - the Acoculco and Los Humeros caldera - were selected as demonstration sites. The Los Humeros geothermal system is steam dominated and has been exploited since the 1990’s with 65 wellbores (28 still producing). With temperatures above 380 °C, the system is characterized as a super-hot geothermal system. The geothermal system in Acoculco (presently consisting of two exploration wells) is characterized by temperatures of approximately 300 °C at a depth of about 2 km. It contains almost no fluids, even though a well-developed fracture network exists in the study area. Therefore, the system serves as a demonstration site for the development of an enhanced geothermal system. The workflow starts with outcrop analogue and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 340 rock samples were taken from representative outcrops inside of the Los Humeros and Acoculco calderas, the surrounding areas and from exhumed ‘fossil systems’ in Las Minas and Zacatlán. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field were obtained. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, heat capacity, as well as ultra-sonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young’s modulus, poisson ratio, bulk modulus, shear modulus, fracture toughness, cohesion and friction angle. In addition, XRD and XRF analyses were performed on 131 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created comprising 34 parameters determined on more than 2160 plugs. More than 31,000 data points were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.V1.

    Petrophysical and mechanical rock property database of the Los Humeros and Acoculco geothermal fields (Mexico)

    Get PDF
    Petrophysical and rock mechanical properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining, are commonly used for the interpretation of geophysical data and the parameterization of numerical models and as thus are the basis for economic reservoir assessment. However, detailed information regarding these properties for each target horizon are often scarce, inconsistent or spread over multiple publications. Thus, subsurface models are often populated with generalized or assumed values resulting in high uncertainty. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to high variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as basis for a profound reservoir assessment and modelling. Within the scope of the GEMex project (EU-H2020, GA Nr. 727550), which aims to develop new transferable exploration and exploitation approaches for super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans Mexican Volcanic Belt - the Acoculco and Los Humeros caldera - were selected as demonstration sites. The Los Humeros geothermal system is steam dominated and has been exploited since the 1990’s with 65 wellbores (28 still producing). With temperatures above 380 °C, the system is characterized as a super-hot geothermal system. The geothermal system in Acoculco (presently consisting of two exploration wells) is characterized by temperatures of approximately 300 °C at a depth of about 2 km. It contains almost no fluids, even though a well-developed fracture network exists in the study area. Therefore, the system serves as a demonstration site for the development of an enhanced geothermal system. The workflow starts with outcrop analogue and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 340 rock samples were taken from representative outcrops inside of the Los Humeros and Acoculco calderas, the surrounding areas and from exhumed ‘fossil systems’ in Las Minas and Zacatlán. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field were obtained. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, heat capacity, as well as ultra-sonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young’s modulus, poisson ratio, bulk modulus, shear modulus, fracture toughness, cohesion and friction angle. In addition, XRD and XRF analyses were performed on 131 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created comprising 34 parameters determined on more than 2160 plugs. More than 31,000 data points were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.V1.

    Reconstruction of the eruptive activity on the NE sector of Stromboli volcano: timing of flank eruptions since 15 ka

    Get PDF
    A multidisciplinary geological and compositional investigation allowed us to reconstruct the occurrence of flank eruptions on the lower NE flank of Stromboli volcano since 15 ka. The oldest flank eruption recognised is Roisa, which occurred at ~15 ka during the Vancori period, and has transitional compositional characteristics between the Vancori and Neostromboli phases. Roisa was followed by the San Vincenzo eruption that took place at ~12 ka during the early stage of Neostromboli period. The eruptive fissure of San Vincenzo gave rise to a large scoria cone located below the village of Stromboli, and generated a lava flow, most of which lies below sea level. Most of the flank eruptions outside the barren Sciara del Fuoco occurred in a short time, between ~9 and 7 ka during the Neostromboli period, when six eruptive events produced scoria cones, spatter ramparts and lava flows. The Neostromboli products belong to a potassic series (KS), and cluster in two differently evolved groups. After an eruptive pause of ~5,000 years, the most recent flank eruption involving the NE sector of the island occurred during the Recent Stromboli period with the formation of the large, highly K calc-alkaline lava flow field, named San Bartolo. The trend of eruptive fissures since 15 ka ranges from N30°E to N55°E, and corresponds to the magma intrusions radiating from the main feeding system of the volcano

    Volcanic debris avalanche transport and emplacement at Chimpa volcano (Central Puna, Argentina): Insights from morphology, grain-size and clast surficial textures

    No full text
    Understanding the flow dynamics in debris avalanches is an important tool to advance the knowledge about lateral failures of volcanoes, a fundamental step towards an accurate risk assessment and mitigation in volcanic areas. We describe the morphological, grain-size, and clast surficial textures of the Casana volcanic debris avalanche deposit emplaced by the sector collapse of Chimpa volcano (Central Puna, Argentina). We focused our analysis on the volcanic debris avalanche deposit, characterized by ridges, reduction in downflow matrix grainsize, jigsaw-cracked blocks in the whole extent of the deposit, collision superficial textures in grains (fractures, percussion marks, and voids). Sedimentological and textural analysis show a progressive disintegration and fracturing of the larger particles with greater distance in a dry, granular flow with minimal internal deformation during propagation. Casana avalanche behaved like a rigid body in the proximal area and as a granular flow in the medial and distal reach. Block sliding mechanisms generated the toreva block in the proximal region whereas granular flow produced the debris avalanche deposits. This is an example of how different mechanisms can interact during debris avalanche emplacement, which are strictly related to the cause of the volcano instability, the lithology and the degree of alteration of the source mass, and its interaction with paleotopography. Although the geological risk of the proposed study area is low, the study of Casana VDAD is important to understand similar processes in other volcanoes providing constraints to hazard assessment.Fil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Capra, Lucía. Universidad Nacional Autónoma de México. Centro de Geociencias, Campus Juriquilla, Querétaro; MéxicoFil: Arnosio, José Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Norini, Gianluca. Consiglio Nazionale delle Ricerche; Itali
    corecore