24 research outputs found

    Real time contrast enhanced ultrasonography in detection of liver metastases from gastrointestinal cancer

    Get PDF
    Background: Contrast enhanced ultrasound (CEUS) is an imaging technique which appeared on the market around the year 2000 and proposed for the detection of liver metastases in gastrointestinal cancer patients, a setting in which accurate staging plays a significant role in the choice of treatment. Methods: A total of 109 patients with colorectal (n = 92)or gastric cancer prospectively underwent computed tomography (CT) scan and conventional US evaluation followed by real time CEUS. A diagnosis of metastases was made by CT or, for lesions not visibile at CT, the diagnosis was achieved by histopathology or by a malignant behavior during follow-up. Results: Of 109 patients, 65 were found to have metastases at presentation. CEUS improved sensitivity in metastatic livers from 76.9% of patients (US) to 95.4% (p < 0.01), while CT scan reached 90.8% (p = n.s. vs CEUS, p < 0.01 vs US). CEUS and CT were more sensitive than US also for detection of single lesions (87 with US, 122 with CEUS, 113 with CT). In 15 patients (13.8%), CEUS revealed more metastases than CT, while CT revealed more metastases than CEUS in 9 patients (8.2%) (p = n.s.). Conclusion: CEUS is more sensitive than conventional US in the detection of liver metastases and could be usefully employed in the staging of patients with gastrointestinal cancer. Findings at CEUS and CT appear to be complementary in achieving maximum sensitivity. © 2007 Piscaglia et al; licensee BioMed Central Ltd

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Contrast-Enhanced Ultrasound (CEUS) for Echographic Detection of Hepato Cellular Carcinoma in Cirrhotic Patients Previously Treated with Multiple Techniques: Comparison of Conventional US, Spiral CT and 3-Dimensional CEUS with Navigator Technique (3DNav CEUS)

    Get PDF
    A commercially available technique named “NAVIGATOR” (Esaote, Italy) easily enables a 3-D reconstruction of a single 2-D acquisition of Contrast Enhanced Ultrasound (CEUS) imaging of the whole liver (with a volumetric correction thanks to the electromagnetic device of NAVIGATOR). Aim of the study was to evaluate this “panoramic” technique in comparison with conventional US and spiral CT in the detection of new hepatic lesions. 144 cirrhotic patients (previously treated for hepato cellular carcinoma (HCC)) in follow-up with detection of 98 new nodules (N), 28 multinodular (Nmulti), 14 loco-regional regrowth (LR) 94 efficaciously treated without new nodules (neg) and four multinodular without new nodules, were submitted to 200 examinations with this new technique from November 2008 to November 2009. 3DNavCEUS was performed using SonoVue (Bracco), as contrast agent, and a machine (Technos MPX, Esaote). Spiral CT and 3DNav CEUS were performed in the same month during follow up. Sens.,Spec.,diagn.-Acc.,PPV and NPV were evaluated; comparison and differences between the techniques were obtained with chi-square (SPSS release-15). Final diagnosis was: 98 new lesions (N) (one to three), 28 multinodular HCC (Nmulti) and 14 loco-regional regrowth (LR); in 94 no more lesions were observed during follow-up; conventional US obtained: 58 N (+18 multinodularN and 8 LR), 40 false negative (+10 Nmulti and 6 LR) (sens:59.2, spec:100%, Diagn Accur:73.6, PPV:100; NPV:70.1); spiral CT obtained: 84N (+26-multinodularN and 14-LR), 14 false-negative (+2-Nmulti), and one false-positive (sens:85.7, spec:97.9%, Diagn Accur:90.9, PPV:97.7; NPV:86.8); 3DNAV obtained: 92N (+28 multinodularN and 14LR), 6 false-negative, and two false-positives (sens:93.9, spec:97.9%, Diagn Accur:95.6, PPV:97.9; NPV:93.9). 3-DNav CEUS is significantly better than US and almost similar to spiral CT for detection of new HCC. This technique, in particular, showed the presence of lesions even in the cases not detected with spiral CT

    Interplay between solid-state organization and optical properties of thin films of poly-arylene-vinylene and -difluorinated vinylene: Fullerene blends

    No full text
    application in organic polymer solar cells. A large variety of low bandgap polymers are prepared by alternating copolymerization of electron-donating donor and electron-withdrawing acceptor units. The interaction between these two units can reduce the polymer bandgap, increasing the sunlight absorption. Benzothiadiazole is commonly used as acceptor block unit in low bandgap polymers. In this contribution we investigate the supramolecular organization and optical properties of thin films of conjugated polymers consisting of benzothiadiazole and thiophene with electron-withdrawing difluorovinylene, and electron-donating vinylene substituents. Atomic force microscopy and spectroscopic ellipsometry are exploited for the analysis of the morphology and optical transitions, respectively. It is found that F-atoms in the vinylene unit yield a blue-shift of the absorption peaks of 0.2 eV respect to the hydrogenated polymer and an increase in the absorption coefficient of fluorinated polymers, which indicates their potential application as photovoltaic material. The morphology evolution of the conjugated polymers blended with a fullerene derivate ([6,6]-phenyl C61-butyric acid methyl ester, PCBM) is also investigated by atomic force microscopy.??

    Mannich base approach to 5-methoxyisatin 3-(4-isopropylphenyl) hydrazone: a water-soluble prodrug for a multitarget inhibition of cholinesterases, beta-amyloid fibrillization and oligomer-induced cytotoxicity

    No full text
    Targeting protein aggregation for the therapy of neurodegenerative diseases remains elusive for medicinal chemists, despite a number of small molecules known to interfere in amyloidogenesis, particularly of amyloid beta (Aβ) protein. Starting from previous findings in the antiaggregating activity of a class of indolin-2-ones inhibiting Aβ fibrillization, 5-methoxyisatin 3-(4-isopropylphenyl)hydrazone 1 was identified as a multitarget inhibitor of Aβ aggregation and cholinesterases with IC50s in the low μM range. With the aim of increasing aqueous solubility, a Mannich-base functionalization led to the synthesis of N-methylpiperazine derivative 2. At acidic pH, an outstanding solubility increase of 2 over the parent compound 1 was proved through a turbidimetric method. HPLC analysis revealed an improved stability of the Mannich base 2 at pH 2 along with a rapid release of 1 in human serum as well as an outstanding hydrolytic stability of the parent hydrazone. Coincubation of Aβ1–42 with 2 resulted in the accumulation of low MW oligomers, as detected with PICUP assay. Cell assays on SH-SY5Y cells revealed that 2 exerts strong cytoprotective effects in both cell viability and radical quenching assays, mainly related to its active metabolite 1. These findings show that 2 drives the formation of non-toxic, off-pathway Aβ oligomers unable to trigger the amyloid cascade and toxicity

    Modification of InN properties by interactions with hydrogen and nitrogen

    No full text
    The interaction of InN epitaxial films grown by r.f. plasma assisted molecular beam epitaxy with atomic hydrogen and nitrogen, produced by remote r.f. H2 and N2 plasmas, is investigated. InN strongly reacts with both atomic hydrogen and nitrogen yielding depletion of nitrogen and concurrent formation of In clusters. The impact of hydrogen treatments on the optical properties of InN is assessed using photoluminescence (PL). It is found that hydrogen suppresses the intense PL band peaked at approximately 0.7eV for the as-grown InN epitaxial layers, and results in the appearance of a new PL band whose peak energy and intensity increase with H-dose. The effect of exposure to atomic hydrogen and nitrogen on electrical properties of InN is investigated using Hall effect measurements. Atomic force microscopy is also used for studying the morphological changes of InN upon interaction with atomic hydrogen and nitrogen

    Tailoring density and optical and thermal behaviour of gold surfaces and nanoparticles exploiting aromatic dithiols

    No full text
    Self-assembled monolayers (SAMs) derived of 4-methoxy-terphenyl-300,500-dimethanethiol (TPDMT) and 4-methoxyterphenyl- 400-methanethiol (TPMT) have been prepared by chemisorption from solution onto gold thin films and nanoparticles. The SAMs have been characterized by spectroscopic ellipsometry, Raman spectroscopy and atomic force microscopy to determine their optical properties, namely the refractive index and extinction coefficient, in an extended spectral range of 0.75-6.5 eV. From the analysis of the optical data, information on SAMs structural organization has been inferred. Comparison of SAMs generated from the above aromatic thiols to well-known SAMs generated from the alkanethiol dodecanethiol revealed that the former aromatic SAMs are densely packed and highly vertically oriented, with a slightly higher packing density and a absence of molecular inclination in TPMT/Au. The thermal behavior of SAMs has also been monitored using ellipsometry in the temperature range 25-500 C. Gold nanoparticles functionalized by the same aromatic thiols have also been discussed for surface enhanced Raman spectroscopy applications. This study represents a step forward tailoring the optical and thermal behavior of surfaces as well as nanoparticles

    Poly(phenyleneethynylene) polymers bearing glucose substituents as promising active layers in enantioselective chemiresistors

    No full text
    Poly(phenyleneethynylene) (PPE) conjugated polymers bearing glucose units are used as enantioselective active layers in vapor-sensing devices. As a novel approach, a conjugated polymer bearing chiral pendant groups is used to detect different enantiomers, natural and synthetic menthol molecules in the present case. The surface analytical characterization of the organic layer reveals a compact and smooth morphology. By means of a quartz crystal microbalance revealing system, the polymer bearing glucose chiral sites is demonstrated to interact more favorably with the natural menthol. Promising perspectives are seen for the use of such polymers in chiral, chemically sensitive resistors or even transistors
    corecore