232 research outputs found
Opioid Peptide Gene Expression in the Primary Hereditary Cardiomyopathy of the Syrian Hamster III. AUTOCRINE STIMULATION OF PRODYNORPHIN GENE EXPRESSION BY DYNORPHIN B
Prodynorphin mRNA and dynorphin B expression have been previously shown to be greatly increased in cardiac myocytes of BIO 14.6 cardiomyopathic hamsters. Here we report that exogenous dynorphin B induced a dose-dependent increase in prodynorphin mRNA levels and stimulated prodynorphin gene transcription in normal hamster myocytes. Similar responses were elicited by the synthetic selective kappa opioid receptor agonist U-50,488H. These effects were counteracted by the kappa opioid receptor antagonist Mr-1452 and were not observed in the presence of chelerythrine or calphostin C, two specific protein kinase C (PKC) inhibitors. Treatment of cardiomyopathic cells with Mr-1452 significantly decreased both prodynorphin mRNA levels and prodynorphin gene transcription. In control myocytes, dynorphin B induced the translocation of PKC-alpha to the nucleus and increased nuclear PKC activity without affecting the expression of PKC-delta, -epsilon, or -zeta. Acute release of either U-50,488H or dyn B over single normal or cardiomyopathic cells transiently increased the cytosolic Ca2+ concentration. A sustained treatment with each opioid agonist increased the cytosolic Ca2+ level for a more prolonged period in cardiomyopathic than in control myocytes and led to a depletion of Ca2+ from the sarcoplasmic reticulum in both groups of cells. The possibility that prodynorphin gene expression may affect the function of the cardiomyopathic cell through an autocrine mechanism is discussed
Opioid Peptide Gene Expression in the Primary Hereditary Cardiomyopathy of the Syrian Hamster II. ROLE OF INTRACELLULAR CALCIUM LOADING
We have previously shown that prodynorphin gene expression was markedly increased in adult myocytes of BIO 14.6 cardiomyopathic hamsters and that nuclear protein kinase C (PKC) may be involved in the induction of this opioid gene. Here we report that the cytosolic Ca2 xv v, b+ concentration was significantly increased in resting and in KCl-depolarized cardiomyopathic myocytes compared with normal cells. In normal and in cardiomyopathic cells, KCl significantly increased prodynorphin mRNA levels and prodynorphin gene transcription. These effects were abolished by the Ca2+ channel blocker verapamil. In control myocytes, the KCl-induced increase in prodynorphin mRNA expression was in part attenuated by chelerythrine or calphostin C, two selective PKC inhibitors. In these cells, KCl induced the translocation of PKC-α into the nucleus, increasing nuclear PKC activity. In resting cardiomyopathic myocytes, the increase in prodynorphin mRNA levels and gene transcription were significantly attenuated by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetraacetoxy-methylester being completely abolished when the chelating agent was administered in the presence of PKC inhibitors. KCl and the PKC activator 1,2-dioctanoyl-sn-glycerol additively stimulated prodynorphin gene expression both in normal and in cardiomyopathic cells. Therefore, we conclude that PKC activation and intracellular Ca2+ overload may represent the two major signaling mechanisms involved in the induction of the prodynorphin gene in cardiomyopathic cells
Clinical and biochemical correlates of serum L-ergothioneine concentrations in community-dwelling middle-aged and older adults
Background: Despite the increasing interest towards the biological role of L-ergothioneine, little is known about the serum concentrations of this unusual aminothiol in older adults. We addressed this issue in a representative sample of communitydwelling middle-aged and older adults.
Methods: Body mass index, estimated glomerular filtration rate, serum concentrations of L-ergothioneine, taurine, homocysteine, cysteine, glutathione, cysteinylglycine, and glutamylcysteine were evaluated in 439 subjects (age 55–85 years) randomly selected from the Hunter Community Study.
Results: Median L-ergothioneine concentration in the entire cohort was 1.01 IQR 0.78–1.33 mmol/L. Concentrations were not affected by gender (P = 0.41) or by presence of chronic medical conditions (P = 0.15). By considering only healthy subjects, we defined a reference interval for L-ergothioneine serum concentrations from 0.36 (90% CI 0.31–0.44) to 3.08 (90% CI 2.45–3.76) mmol/L. Using stepwise multiple linear regression analysis L-ergothioneine was negatively correlated with age (rpartial =20.15; P = 0.0018) and with glutamylcysteine concentrations (rpartial =20.13; P = 0.0063).
Conclusions: A thorough analysis of serum L-ergothioneine concentrations was performed in a large group of communitydwelling middle-aged and older adults. Reference intervals were established. Age and glutamylcysteine were independently negatively associated with L-ergothioneine serum concentration.</br
Plasma L-ergothioneine measurement by high-performance liquid chromatography and capillary electrophoresis after a pre-column derivatization with 5-iodoacetamidofluorescein (5-IAF) and fluorescence detection
Two sensitive and reproducible capillary electrophoresis and high-performance liquid chromatography-fluorescence procedures were established for quantitative determination of L-egothioneine in plasma. After derivatization of L-ergothioneine with 5-iodoacetamidofluorescein, the separation was carried out by HPLC on an ODS-2 C-18 sperisorb column by using a linear gradient elution and by HPCE on an uncoated fused silica capillary, 50 µm id, and 60 cm length. The methods were validated and found to be linear in the range of 0.3 to 10 µmol/l. The limit of quantification was 0.27 µmol/l for HPCE and 0.15 µmol/l for HPLC. The variations for intra- and inter-assay precision were around 6 RSD%, and the mean recovery accuracy close to 100% (96.11%)
D-Dimer Concentrations and COVID-19 Severity: A Systematic Review and Meta-Analysis
Coronavirus disease 2019 (COVID-19) is a recently described infectious disease caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since late 2019,
COVID-19 has rapidly spread in virtually all countries, imposing the adoption of significant
lockdown and social distancing measures. The activation of the coagulation cascade
is a common feature of disseminated intravascular coagulation and adverse clinical
outcomes in COVID-19 patients. In this study, we conducted a meta-analysis aiming
to investigate differences in serum D-dimer concentrations in patients with and without
severe COVID-19 disease. An electronic search in Medline (PubMed), Scopus and Web
of Science was performed with no language restrictions, and 13 articles were reporting on
1,807 patients (585, 32.4% with severe disease) were finally identified and included in the
meta-analysis. The pooled results of all studies revealed that the D-dimer concentrations
were significantly higher in patients with more severe COVID-19 (SMD: 0.91 mg/L; 95%
CI, 0.75 to 1.07 mg/L, p < 0.0001). The heterogeneity was moderate (I
2 = 46.5%;
p = 0.033). Sensitivity analysis showed that the effect size was not modified when any
single study was in turn removed (effect size range, 0.87 mg/L to 0.93 mg/L). The Begg’s
(p = 0.76) and Egger’s tests (p = 0.38) showed no publication bias. In conclusion,
our systematic review and meta-analysis showed that serum D-dimer concentrations
in patients with severe COVID-19 are significantly higher when compared to those with
non-severe forms.This research was funded by Qatar University [IRCC-2019-007] to GN and GP, Regione Autonoma della Sardegna [RASSR82005] to GP and AZ, and fondo UNISS di Ateneo per la ricerca 2019 to GP and AZ
Dynorphin gene expression and release in the myocardial cell.
The expression of the prodynorphin gene was investigated in adult cultured rat ventricular cardiac myocytes by using a sensitive solution hybridization RNase protection assay for the quantitative analysis of prodynorphin mRNA. Myocyte culture in high KCl resulted, after 4 h, in a marked increase in cellular prodynorphin mRNA, while a KCl treatment for 6, 12, or 24 h progressively down-regulated the levels of prodynorphin mRNA below the control value. Immunoreactive dynorphin B, a biologically active end product of the precursor, was found to be present in the culture medium in significantly higher amounts than in the cardiac myocytes. The levels of this biologically active K opioid receptor agonist significantly increased after 4 h of KCl treatment and were markedly reduced following a 24-h exposure of the cardiac myocytes to KCl. These KCl-induced effects were all abolished by cell incubation in the presence of the calcium channel blocker verapamil. In single cardiac myocytes, acute stimulation of K opioid receptors with dynorphin B or with the selective agonist U-50,488H increased the level of cytosolic calcium. This effect was abolished by the specific K opioid receptor antagonist (Mr-1452) and was not affected by the removal of calcium from the bathing medium. These results suggest that an opioid gene may influence the myocardial function in an autocrine or paracrine fashion
The Oxidative state of LDL is the major determinant of anti/prooxidant effect of coffee on Cu<sup>2+</sup> catalysed peroxidation
Antioxidants exert contrasting effect on low density lipoprotein (LDL) oxidation catalysed by metals, acting as
pro-oxidants under select in vitro conditions. Through our study on the effect of coffee on LDL oxidation, we identified the parameters governing this phenomenon, contributing to the comprehension of its mechanism and discovering significant implications for correct alimentary recommendations. By measuring conjugated diene formation, we have analysed the quantitative and qualitative effects exerted by an extract of roasted coffee on LDL oxidation triggered by copper sulphate. When the relative effects of different coffee concentrations were plotted against the lag time (LT) of control LDL (C-LDL), the apparently random experimental data arranged in sensible patterns: by increasing the LT the antioxidant activity of coffee decreased progressively to become prooxidant. The critical LT, at which coffee switches from antioxidant to prooxidant, increased by increasing coffee concentration. Also the contrasting results obtained following a delayed addition of coffee to the assay, arranged in a simple pattern when referred to the LT of C-LDL: the prooxidant effect decreased to become antioxidant as the LT of C-LDL increased. The dependence of coffee effect on the LT of C-LDL was influenced by LDL but not by metal catalyst concentration. These novel findings point to the oxidative
state of LDL as a major parameter controlling the anti/prooxidant effect of coffee and suggest the LT of C-LDL as a potent analytical tool to express experimental data when studying the action exerted by a compound on LDL oxidation
Opioid Peptide Gene Expression in the Primary Hereditary Cardiomyopathy of the Syrian Hamster I. REGULATION OF PRODYNORPHIN GENE EXPRESSION BY NUCLEAR PROTEIN KINASE C
Prodynorphin gene expression was investigated in adult ventricular myocytes isolated from normal (F1B) or cardiomyopathic (BIO 14.6) hamsters. Prodynorphin mRNA levels were higher in cardiomyopathic than in control myocytes and were stimulated by treatment of control cells with the protein kinase C (PKC) activator 1, 2-dioctanoyl-sn-glycerol. Both chelerythrine and calphostin C, two PKC inhibitors, abolished the stimulatory effect of the diglyceride and significantly reduced prodynorphin gene expression in cardiomyopathic myocytes. Nuclear run-off experiments indicated that the prodynorphin gene was regulated at the transcriptional level and that treatment of nuclei isolated from control cells with 1, 2-dioctanoyl-sn-glycerol increased prodynorphin gene transcription, whereas chelerythrine or calphostin C abolished this transcriptional effect. Direct exposure of nuclei isolated from cardiomyopathic myocytes to these inhibitors markedly down-regulated the rate of gene transcription. The expression of PKC-alpha, -delta, and -epsilon, as well as PKC activity, were increased in nuclei of cardiomyopathic myocytes compared with nuclei from control cells. The levels of both intracellular and secreted dynorphin B, a biologically active product of the gene, were higher in cardiomyopathic than in control cells and were stimulated or inhibited by cell treatment with 1,2-dioctanoyl-sn-glycerol or PKC inhibitors, respectively
- …