16 research outputs found

    Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    Get PDF
    BACKGROUND: Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. RESULTS: Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. CONCLUSION: The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled

    Combined α2- and D2-receptor blockade activates noradrenergic and dopaminergic neurons, but extracellular dopamine in the prefrontal cortex is determined by uptake and release from noradrenergic terminals

    Get PDF
    Experimental and clinical evidence indicates a deficit of release and function of dopamine in schizophrenia and suggests that α2-adrenoceptor antagonists rescue dopamine deficit and improve the antipsychotic efficacy of D2-receptor antagonists. In anesthetized male rats, we investigated how the blockade of α2- and D2-receptors by atipamezole and raclopride, respectively, modified the firing of noradrenergic neurons in the locus coeruleus (LC) and dopaminergic neurons in the ventral tegmental area (VTA). In freely moving rats, we studied how atipamezole and raclopride modified extracellular noradrenaline, dopamine, and DOPAC levels in the medial prefrontal cortex (mPFC) through microdialysis. When administered alone, atipamezole activated LC noradrenaline but not VTA dopamine cell firing. Combined with raclopride, atipamezole activated dopamine cell firing above the level produced by raclopride. Atipamezole increased extracellular dopamine to the same level, whether administered alone or combined with raclopride. In the presence of the noradrenaline transporter (NET) inhibitor, atipamezole combined with raclopride increased extracellular dopamine beyond the level produced by either compound administered alone. The results suggest that a) the D2-autoreceptor blockade is required for LC noradrenaline to activate VTA cell firing; b) the level of dopamine released from dopaminergic terminals is determined by NET; c) the elevation of extracellular dopamine levels in the mPFC is the resultant of dopamine uptake and release from noradrenergic terminals, independent of dopaminergic cell firing and release; and d) LC noradrenergic neurons are an important target for treatments to improve the prefrontal deficit of dopamine in neuropsychiatric pathologies

    Combined α2- and D2-receptor blockade activates noradrenergic and dopaminergic neurons, but extracellular dopamine in the prefrontal cortex is determined by uptake and release from noradrenergic terminals

    Get PDF
    Experimental and clinical evidence indicates a deficit of release and function of dopamine in schizophrenia and suggests that a(2)-adrenoceptor antagonists rescue dopamine deficit and improve the antipsychotic efficacy of D-2-receptor antagonists. In anesthetized male rats, we investigated how the blockade of a(2)- and D-2-receptors by atipamezole and raclopride, respectively, modified the firing of noradrenergic neurons in the locus coeruleus (LC) and dopaminergic neurons in the ventral tegmental area (VTA). In freely moving rats, we studied how atipamezole and raclopride modified extracellular noradrenaline, dopamine, and DOPAC levels in the medial prefrontal cortex (mPFC) through microdialysis. When administered alone, atipamezole activated LC noradrenaline but not VTA dopamine cell firing. Combined with raclopride, atipamezole activated dopamine cell firing above the level produced by raclopride. Atipamezole increased extracellular dopamine to the same level, whether administered alone or combined with raclopride. In the presence of the noradrenaline transporter (NET) inhibitor, atipamezole combined with raclopride increased extracellular dopamine beyond the level produced by either compound administered alone. The results suggest that a) the D-2-autoreceptor blockade is required for LC noradrenaline to activate VTA cell firing; b) the level of dopamine released from dopaminergic terminals is determined by NET; c) the elevation of extracellular dopamine levels in the mPFC is the resultant of dopamine uptake and release from noradrenergic terminals, independent of dopaminergic cell firing and release; and d) LC noradrenergic neurons are an important target for treatments to improve the prefrontal deficit of dopamine in neuropsychiatric pathologies

    Noradrenergic Source of Dopamine Assessed by Microdialysis in the Medial Prefrontal Cortex

    Get PDF
    Previous results indicate that dopamine (DA) release in the medial prefrontal cortex (mPFC) is modified by α2 adrenoceptor- but not D2 DA receptor- agonists and antagonists, suggesting that DA measured by microdialysis in the mPFC originates from noradrenergic terminals. Accordingly, noradrenergic denervation was found to prevent α2-receptor-mediated rise and fall of extracellular DA induced by atipamezole and clonidine, respectively, in the mPFC. The present study was aimed to determine whether DA released by dopaminergic terminals in the mPFC is not detected by in vivo microdialysis because is readily taken up by norepinephrine transporter (NET). Accordingly, the D2-antagonist raclopride increased the electrical activity of DA neurons in the ventral tegmental area (VTA) and enhanced extracellular DOPAC but failed to modify DA in the mPFC. However, in rats whose NET was either inactivated by nisoxetine or eliminated by noradrenergic denervation, raclopride still elevated extracellular DOPAC and activated dopaminergic activity, but also increased DA. Conversely, the D2-receptor agonist quinpirole reduced DOPAC but failed to modify DA in the mPFC in control rats. However, in rats whose NET was eliminated by noradrenergic denervation or inhibited by locally perfused nisoxetine, quinpirole maintained its ability to reduce DOPAC but acquired that of reducing DA. Moreover, raclopride and quinpirole, when locally perfused into the mPFC of rats subjected to noradrenergic denervation, were able to increase and decrease, respectively, extracellular DA levels, while being ineffective in control rats. Transient inactivation of noradrenergic neurons by clonidine infusion into the locus coeruleus, a condition where NET is preserved, was found to reduce extracellular NE and DA in the mPFC, whereas noradrenergic denervation, a condition where NET is eliminated, almost totally depleted extracellular NE but increased DA. Both transient inactivation and denervation of noradrenergic neurons were found to reduce the number of spontaneously active DA neurons and their bursting activity in the VTA. The results indicate that DA released in the mPFC by dopaminergic terminals is not detected by microdialysis unless DA clearance from extracellular space is inactivated. They support the hypothesis that noradrenergic terminals are the main source of DA measured by microdialysis in the mPFC during physiologically relevant activities

    Epidemiological study of pathogens isolated from blood in Liguria during 2011

    Get PDF
    Objectives. An epidemiological study addressed to identify the most represented pathogens isolated from blood and to evaluate their antibiotic susceptibility patterns, was conducted. Methods. Five clinical microbiology laboratories, homogenously distributed in Liguria, were required to collected all consecutive non-duplicates strains isolated from blood cultures during March 2011 to May 2011. the strains were sent to the reference laboratory (Section of Microbiology, DISC, University of Genoa, Italy). Results. A total of 159 microorganisms were enrolled, including 81 Gram positive, 69 Gram negative and 9 fungi.The most represented pathogens were: Escherichia coli (35), Staphylococcus aureus (26), S. epidermidis (20), S. hominis (10). Samples were collected mainly from medicine (59 isolates).Among the staphylococci, the most active molecules were: vancomycin (100% of susceptible strains), teicoplanin (93.4%), trimethoprim-sulfamethoxazole (83.8%) and tobramycin (61.6%). Enterococci showed rates of resistance to vancomycin of 25%. Enterobacteriaceae exhibited resistance to ampicillin (76.9%), ceftriaxone (44.4%), ciprofloxacin (43.3%), trimethoprim-sulfamethoxazole (36.6%) and ceftazidime (32.2%). Conclusions. The data show a higher incidence of Gram positive (51%) in comparison to Gram negative (43.4%). Gram-positive strains showed a high resistance level to fluoroquinolones (92.3%) while Gram-negative resulted resistant to ceftriaxone (44.4%) and fluoroquinolone (43.3%)

    Epidemiological study of pathogens isolated from blood in Liguria (January-April 2010)

    Get PDF
    Objectives. An epidemiological study to identify the most represented pathogens isolated from blood and to evaluate their antibiotic susceptibility patterns, was conducted. Methods. Seven clinical microbiology laboratories, homogeneously distributed in the Ligurian area,were required to collected all consecutive non-duplicates strains isolated froom blood cultures during January 2010 to April 2010. The strains were sent to the reference laboratory (Sezione di Microbiologia del DISC, University of Genoa, Italy). Results. A total of 277 microorganisms were enrolled, including 155 Gram positive and 122 Gram negative.The most represented pathogens were: Escherichia coli (68), Staphylococcus aureus (57), Staphylococcus epidermidis (32), Staphylococcus hominis (17), Pseudomonas aeruginosa (15), Klebsiella pneumoniae (15), Enterococcus faecalis (11). Samples were collected mainly from medicine (66, 33.3%, of this number was determined by E. coli), intensive care units (33, 18.2% of this number consisted of S. epidermidis), surgery (24, 33.3% consisted of E. coli) and infectious diseases (20, of which S. aureus, E. coli and S. epidermidis equally represented 20.0%).Among the Staphylococci the most active molecules were: vancomycin and teicoplanin (100% of susceptible strains), chloramphenicol (92.3%) and trimethoprim-sulfamethoxazole (89.8%). Among the OXA-R Staphylococci (81/123, 65.9%) the most active molecules were: vancomycin and teicoplanin (100% of susceptible strains), chloramphenicol (93.8%) and trimethoprim-sulfamethoxazole (84.8%). Enterococci showed rates of resistance to vancomycin of 5.9%. Enterobacteriaceae exhibited resistance to ampicillin (77.5%), trimethoprim-sulfamethoxazole (42.6%), ciprofloxacin (41.2%), ceftriaxone (37.5%), ceftazidime (28.2%), cefepime (26.7%), cefoxitin (22.1%), piperacillintazobactam (20.4%), imipenem (4.7%) and amikacin (2.9%). The Gram negative non-Enterobacteriaceae showed rates of resistance of 100% to ceftriaxone, 81.3% to trimethoprim-sulfamethoxazole, 42.1% to ciprofloxacin and piperacillin-tazobactam, 33.3% to ceftazidime, 31.6% to cefepime, 27.8% to imipenem, 26.3 % to amikacin. Conclusions. The data show a higher incidence of Gram positive (56%) in comparison to Gram negative (44%).This confirms the high incidence of oxacillino-resistance in Staphylococci in our geographic area.Against Enterobacteriaceae rates of resistance were observed in excess of 20% for all drugs tested except imipenem (4.7%) and amikacin (2.9%). The proportion of imipenem-resistant isolates was constituted of strains of K. pneumoniae carbapenemase producers

    The dopamine β-hydroxylase inhibitor, nepicastat, suppresses chocolate self-administration and reinstatement of chocolate seeking in rats

    No full text
    Craving for chocolate is a common phenomenon, which may evolve to an addictive-like behaviour and contribute to obesity. Nepicastat is a selective dopamine β-hydroxylase (DBH) inhibitor that suppresses cocaine-primed reinstatement of cocaine seeking in rats. We verified whether nepicastat was able to modify the reinforcing and motivational properties of a chocolate solution and to prevent the reinstatement of chocolate seeking in rats. Nepicastat (25, 50 and 100 mg/kg, intraperitoneal) produced a dose-related inhibition of operant self-administration of the chocolate solution in rats under fixed-ratio 10 (FR10) and progressive-ratio schedules of reinforcement, measures of the reinforcing and motivational properties of the chocolate solution, respectively. The effect of nepicastat on the reinstatement of chocolate seeking was studied in rats in which lever-responding had been extinguished by removing the chocolate solution for approximately 8 d. Nepicastat dose-dependently suppressed the reinstatement of lever-responding triggered by a 'priming' of the chocolate solution together with cues previously associated with the availability of the reward. In a separate group of food-restricted rats trained to lever-respond for regular food pellets, nepicastat reduced FR10 lever-responding with the same potency as for the chocolate solution. Spontaneous locomotor activity was not modified by nepicastat doses that reduced self-administration of the chocolate solution and regular food pellets and suppressed the reinstatement of chocolate seeking. The results indicate that nepicastat reduces motivation to food consumption sustained by appetite or palatability. Moreover, the results suggest that DBH inhibitors may be a new class of pharmacological agents potentially useful in the prevention of relapse to food seeking in human dieters

    Noradrenergic terminals are the primary source of α2-adrenoceptor mediated dopamine release in the medial prefrontal cortex

    Get PDF
    In various psychiatric disorders, deficits in dopaminergic activity in the prefrontal cortex (PFC) are implicated. Treatments involving selective augmentation of dopaminergic activity in the PFC primarily depend on the inhibition of α2-adrenoreceptors singly or in combination with the inhibition of the norepinephrine transporter (NET). We aimed to clarify the relative contribution of dopamine (DA) release from noradrenergic and dopaminergic terminals to DA output induced by blockade of α2-adrenoreceptors and NET. To this end, we assessed whether central noradrenergic denervation modified catecholamine output in the medial PFC (mPFC) of rats elicited by atipamezole (an α2-adrenoreceptor antagonist), nisoxetine (an NET inhibitor), or their combination. Intraventricular administration of anti-dopamine-beta-hydroxylase-saporin (aDBH) caused a loss of DBH-positive fibers in the mPFC and almost total depletion of tissue and extracellular NE level; however, it did not reduce tissue DA level but increased extracellular DA level by 70% in the mPFC. Because noradrenergic denervation should have caused a loss of NET and reduced NE level at α2-adrenoceptors, the actual effect of an aDBH-induced lesion on DA output elicited by blockade of α2-adrenoceptors and NET was evaluated by comparing denervated and control rats following blockade of α2-adrenoceptors and NET with atipamezole and nisoxetine, respectively. In the control rats, extracellular NE and DA levels increased by approximately 150% each with 3 mg/kg atipamezole; 450% and 230%, respectively, with 3 mg/kg nisoxetine; and 2100% and 600%, respectively, with combined atipamezole and nisoxetine. In the denervated rats, consistent with the loss of NET, nisoxetine failed to modify extracellular DA level, whereas atipamezole, despite the lack of NE-induced stimulation of α2-adrenoceptors, increased extracellular DA level by approximately 30%. Overall, these results suggest that atipamezole-induced DA release mainly originated from noradrenergic terminals, possibly through the inhibition of α2-autoreceptors. Furthermore, while systemic and local administration of the α2-adrenoceptor agonist clonidine into the mPFC of the controls rats reduced extracellular NE level by 80% and 60%, respectively, and extracellular DA level by 50% and 60%, respectively, it failed to reduce DA output in the denervated rats, consistent with the loss of α2-autoreceptors. To eliminate the possibility that denervation reduced DA release potential via the effects at dopaminergic terminals in the mPFC, the effect of systemic administration of the D2-DA antagonist raclopride (0.5 mg/kg IP) on DA output was analyzed. In the control rats, raclopride was found to be ineffective when administered alone, but it increased extracellular DA level by 380% following NET inhibition with nisoxetine. In the denervated rats, as expected due to the loss of NET, raclopride-alone or with nisoxetine-increased DA release to approximately the same level as that observed in the control rats after NET inhibition. Overall, these results suggest that noradrenergic terminals in the mPFC are the primary source of DA released by blockade of α2-adrenoreceptors and NET and that α2-autoreceptors, and not α2-heteroreceptors, mediate DA output induced by α2-adrenoceptor blockade
    corecore