617 research outputs found

    Lipid oxidation kinetics of ozone-processed shrimp during iced storage using peroxide value measurements

    Get PDF
    In this research, in situ generated ozone exposure/wash cycles of 1, 3, and 5 min applied to shrimp samples either before (BIS) or during iced storage (DIS) has been used to study the lipid oxidation kinetics using the peroxide values (PV). The induction period (IP) as well as PV at end of the IP (PVIP) have been obtained. The rate constants (k) as well as half-lives (t1/2) of hydroperoxides formation for different oxidation stages were calculated. The results showed that both IP and PVIP were lower with BIS (IP between 4.35±0.09 and 5.08±0.23 days; PVIP between 2.92±0.06 and 3.40±0.18 mEq kg−1) compared with DIS (IP between 5.92±0.12 and 6.14±0.09 days; PVIP between 4.49±0.17 and 4.56±0.10 mEq kg−1). The k value for DIS seemed to be the greater compared to BIS. In addition, whilst decreases and increases in t1/2 were found at propagation, respectively, for BIS and DIS, decreases and increases were only found at the induction of oxidation stage(s) for BIS. Further, the PV of ozone-processed samples would fit first order lipid oxidation kinetics independent of duration of ozone exposures. For the first time, PV measurements and fundamental kinetic principles have been used to describe how increasing ozone exposures positively affects the different oxidation stages responsible for the formation of hydroperoxides in ozone-processed shrimp

    Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 62 (2017): 1984–2003, doi:10.1002/lno.10547.Thaumarchaea are among the most abundant microbial groups in the ocean, but controls on their abundance and the distribution and metabolic potential of different subpopulations are poorly constrained. Here, two ecotypes of ammonia-oxidizing thaumarchaea were quantified using ammonia monooxygenase (amoA) genes across the equatorial Pacific Ocean. The shallow, or water column “A” (WCA), ecotype was the most abundant ecotype at the depths of maximum nitrification rates, and its abundance correlated with other biogeochemical indicators of remineralization such as NO3 : Si and total Hg. Metagenomes contained thaumarchaeal genes encoding for the catalytic subunit of the urease enzyme (ureC) at all depths, suggesting that members of both WCA and the deep, water column “B” (WCB) ecotypes may contain ureC. Coupled urea hydrolysis-ammonia oxidation rates were similar to ammonia oxidation rates alone, suggesting that urea could be an important source of ammonia for mesopelagic ammonia oxidizers. Potential inducement of metal limitation of both ammonia oxidation and urea hydrolysis was demonstrated via additions of a strong metal chelator. The water column inventory of WCA was correlated with the depth-integrated abundance of WCB, with both likely controlled by the flux of sinking particulate organic matter, providing strong evidence of vertical connectivity between the ecotypes. Further, depth-integrated amoA gene abundance and nitrification rates were correlated with particulate organic nitrogen flux measured by contemporaneously deployed sediment traps. Together, the results refine our understanding of the controls on thaumarchaeal distributions in the ocean, and provide new insights on the relationship between material flux and microbial communities in the mesopelagic.United States National Science Foundation (NSF) Grant Numbers: OCE-1260006, OCE-1031271, OCE-1337780, OCE-1259994; University of Maryland Center for Environmental Science (UMCES); JGI Community Sequencing Project 133

    Black Hole Mergers from Hierarchical Triples in Dense Star Clusters

    Get PDF
    Hierarchical triples are expected to be produced by the frequent binary-mediated interactions in the cores of globular clusters. In some of these triples, the tertiary companion can drive the inner binary to merger following large eccentricity oscillations, as a result of the eccentric Kozai–Lidov mechanism. In this paper, we study the dynamics and merger rates of black hole (BH) hierarchical triples, formed via binary–binary encounters in the CMC Cluster Catalog, a suite of cluster simulations with present-day properties representative of the Milky Way's globular clusters. We compare the properties of the mergers from triples to the other merger channels in dense star clusters, and show that triple systems do not produce significant differences in terms of mass and effective spin distribution. However, they represent an important pathway for forming eccentric mergers, which could be detected by LIGO–Virgo/Kamioka Gravitational-Wave Detector (LVK), and future missions such as LISA and the DECi-hertz Interferometer Gravitational wave Observatory. We derive a conservative lower limit for the merger rate from this channel of 0.35 Gpc⁻³ yr⁻Âč in the local universe and up to ~9% of these events may have a detectable eccentricity at LVK design sensitivity. Additionally, we find that triple systems could play an important role in retaining second-generation BHs, which can later merge again in the core of the host cluster

    Basin-scale inputs of cobalt, iron, and manganese from the Benguela-Angola front to the South Atlantic Ocean

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 989-1010, doi:10.4319/lo.2012.57.4.0989.We present full-depth zonal sections of total dissolved cobalt, iron, manganese, and labile cobalt from the South Atlantic Ocean. A basin-scale plume from the African coast appeared to be a major source of dissolved metals to this region, with high cobalt concentrations in the oxygen minimum zone of the Angola Dome and extending 2500 km into the subtropical gyre. Metal concentrations were elevated along the coastal shelf, likely due to reductive dissolution and resuspension of particulate matter. Linear relationships between cobalt, N2O, and O2, as well as low surface aluminum supported a coastal rather than atmospheric cobalt source. Lateral advection coupled with upwelling, biological uptake, and remineralization delivered these metals to the basin, as evident in two zonal transects with distinct physical processes that exhibited different metal distributions. Scavenging rates within the coastal plume differed for the three metals; iron was removed fastest, manganese removal was 2.5 times slower, and cobalt scavenging could not be discerned from water mass mixing. Because scavenging, biological utilization, and export constantly deplete the oceanic inventories of these three hybrid-type metals, point sources of the scale observed here likely serve as vital drivers of their oceanic cycles. Manganese concentrations were elevated in surface waters across the basin, likely due to coupled redox processes acting to concentrate the dissolved species there. These observations of basin-scale hybrid metal plumes combined with the recent projections of expanding oxygen minimum zones suggest a potential mechanism for effects on ocean primary production and nitrogen fixation via increases in trace metal source inputs.This research was supported US National Science Foundation Chemical Oceanography (Division of Ocean Sciences OCE-0452883, OCE-0752291, OCE-0928414, OCE-1031271), the Center for Microbial Research and Education, the Gordon and Betty Moore Foundation, the WHOI Coastal Ocean Institute, and the WHOI Ocean Life Institute
    • 

    corecore