1,152 research outputs found

    Experimental Realization of Optimal Noise Estimation for a General Pauli Channel

    Full text link
    We present the experimental realization of the optimal estimation protocol for a Pauli noisy channel. The method is based on the generation of 2-qubit Bell states and the introduction of quantum noise in a controlled way on one of the state subsystems. The efficiency of the optimal estimation, achieved by a Bell measurement, is shown to outperform quantum process tomography

    Variational approach to a class of nonlinear oscillators with several limit cycles

    Full text link
    We study limit cycles of nonlinear oscillators described by the equation x¨+νF(x˙)+x=0\ddot x + \nu F(\dot x) + x =0. Depending on the nonlinearity this equation may exhibit different number of limit cycles. We show that limit cycles correspond to relative extrema of a certain functional. Analytical results in the limits ν−>0\nu ->0 and ν−>∞\nu -> \infty are in agreement with previously known criteria. For intermediate ν\nu numerical determination of the limit cycles can be obtained.Comment: 12 pages, 3 figure

    Convergence of nonlocal threshold dynamics approximations to front propagation

    Full text link
    In this note we prove that appropriately scaled threshold dynamics-type algorithms corresponding to the fractional Laplacian of order α∈(0,2)\alpha \in (0,2) converge to moving fronts. When α≧1\alpha \geqq 1 the resulting interface moves by weighted mean curvature, while for α<1\alpha <1 the normal velocity is nonlocal of ``fractional-type.'' The results easily extend to general nonlocal anisotropic threshold dynamics schemes.Comment: 19 page

    Frustration Effects in Antiferromagnetic FCC Heisenberg Films

    Full text link
    We study the effects of frustration in an antiferromagnetic film of FCC lattice with Heisenberg spin model including an Ising-like anisotropy. Monte Carlo (MC) simulations have been used to study thermodynamic properties of the film. We show that the presence of the surface reduces the ground state (GS) degeneracy found in the bulk. The GS is shown to depend on the surface in-plane interaction JsJ_s with a critical value at which ordering of type I coexists with ordering of type II. Near this value a reentrant phase is found. Various physical quantities such as layer magnetizations and layer susceptibilities are shown and discussed. The nature of the phase transition is also studied by histogram technique. We have also used the Green's function (GF) method for the quantum counterpart model. The results at low-TT show interesting effects of quantum fluctuations. Results obtained by the GF method at high TT are compared to those of MC simulations. A good agreement is observed.Comment: 11 pages, 19 figures, submitted to J. Phys.: Condensed Matte

    On the nonexistence of Liouvillian first integrals for generalized Liénard polynomial differential systems

    Get PDF
    International audienceWe consider generalized Liénard polynomial differential systems. In their work, Llibre and Valls have shown that, except in some particular cases, such systems have no Liouvillian first integral. In this letter, we give a direct and shorter proof of this result

    Long-range interactions and non-extensivity in ferromagnetic spin models

    Full text link
    The Ising model with ferromagnetic interactions that decay as 1/rα1/r^\alpha is analyzed in the non-extensive regime 0≤α≤d0\leq\alpha\leq d, where the thermodynamic limit is not defined. In order to study the asymptotic properties of the model in the N→∞N\rightarrow\infty limit (NN being the number of spins) we propose a generalization of the Curie-Weiss model, for which the N→∞N\rightarrow\infty limit is well defined for all α≥0\alpha\geq 0. We conjecture that mean field theory is {\it exact} in the last model for all 0≤α≤d0\leq\alpha\leq d. This conjecture is supported by Monte Carlo heat bath simulations in the d=1d=1 case. Moreover, we confirm a recently conjectured scaling (Tsallis\cite{Tsallis}) which allows for a unification of extensive (α>d\alpha>d) and non-extensive (0≤α≤d0\leq\alpha\leq d) regimes.Comment: RevTex, 12 pages, 1 eps figur

    Thermal Correlators in Holographic Models with Lifshitz scaling

    Full text link
    We study finite temperature effects in two distinct holographic models that exhibit Lifshitz scaling, looking to identify model independent features in the dual strong coupling physics. We consider the thermodynamics of black branes and find different low-temperature behavior of the specific heat. Deformation away from criticality leads to non-trivial temperature dependence of correlation functions and we study how the characteristic length scale in the two point function of scalar operators varies as a function of temperature and deformation parameters.Comment: 28 pages, 8 figures; typos corrected, references added, published versio

    Development and tests of a new prototype detector for the XAFS beamline at Elettra Synchrotron in Trieste

    Get PDF
    The XAFS beamline at Elettra Synchrotron in Trieste combines X-ray absorption spectroscopy and X-ray diffraction to provide chemically specific structural information of materials. It operates in the energy range 2.4-27 keV by using a silicon double reflection Bragg monochromator. The fluorescence measurement is performed in place of the absorption spectroscopy when the sample transparency is too low for transmission measurements or the element to study is too diluted in the sample. We report on the development and on the preliminary tests of a new prototype detector based on Silicon Drift Detectors technology and the SIRIO ultra low noise front-end ASIC. The new system will be able to reduce drastically the time needed to perform fluorescence measurements, while keeping a short dead time and maintaining an adequate energy resolution to perform spectroscopy. The custom-made silicon sensor and the electronics are designed specifically for the beamline requirements.Comment: Proceeding of the 6YRM 12th-14th Oct 2015 - L'Aquila (Italy). Accepted for publication on Journal of Physics: Conference Serie

    A new cubic theory of gravity in five dimensions: Black hole, Birkhoff's theorem and C-function

    Full text link
    We present a new cubic theory of gravity in five dimensions which has second order traced field equations, analogous to BHT new massive gravity in three dimensions. Moreover, for static spherically symmetric spacetimes all the field equations are of second order, and the theory admits a new asymptotically locally flat black hole. Furthermore, we prove the uniqueness of this solution, study its thermodynamical properties, and show the existence of a C-function for the theory following the arguments of Anber and Kastor (arXiv:0802.1290 [hep-th]) in pure Lovelock theories. Finally, we include the Einstein-Gauss-Bonnet and cosmological terms and we find new asymptotically AdS black holes at the point where the three maximally symmetric solutions of the theory coincide. These black holes may also possess a Cauchy horizon.Comment: 21 pages, no figures, V2: two appendices and some references added, V3: New section on the generalization to arbitrary higher order. Analogy with BHT new massive gravity Lagrangian made more precise, V4: Typos corrected. To appear in CQ
    • …
    corecore