2,777 research outputs found
Evidence of Confinement of Solar-energetic Particles to Interplanetary Magnetic Field Lines
We present new observations of solar-energetic particles (SEPs) associated with impulsive solar flares that show
evidence for their confinement to interplanetary magnetic field lines. Some SEP events exhibit intermittent intensity
dropouts becausemagnetic field lines filledwith and empty of particle flux mix together. The edges of these dropouts
are observed to be very sharp, suggesting that particles cannot easily move from a filled to an empty field line in
the time available during their transport from the Sun. In this paper, we perform high time-resolution observations
of intensity fall-off at the edges of observed SEP dropouts in order to look for signatures of particle motion off
field lines. However, the statistical study is dominated by one particularly intense event. The inferred length scale
of the intensity decay is comparable to the gyroradii of the particles, suggesting that particles only rarely scatter off magnetic field lines during interplanetary transport
Effects of interplanetary transport on derived energetic particle source strengths
We study the transport of solar energetic particles (SEPs) in the inner heliosphere in order to relate observations made by an observer at 1 AU to the number and total energy content of accelerated particles at the source, assumed to be near the Sun. We use a numerical simulation that integrates the trajectories of a large number of individual particles moving in the interplanetary magnetic field. We model pitch angle scattering and adiabatic cooling of energetic ions with energies from 50 keV nucleon^(−1) to 100 MeV nucleon^(−1). Among other things, we determine the number of times that particles of a given energy cross 1 AU and the average energy loss that they suffer because of adiabatic deceleration in the solar wind. We use a number of different forms of the interplanetary spatial diffusion coefficient and a wide range of scattering mean-free paths and consider a number of different ion species in order to generate a wide range of simulation results that can be applied to individual SEP events. We apply our simulation results to observations made at 1 AU of the 20 February 2002 solar energetic particle event, finding the original energy content of several species. We find that estimates of the source energy based on SEP measurements at 1 AU are relatively insensitive to the mean-free path and scattering scheme if adiabatic cooling and multiple crossings are taken into account
The mixing of interplanetary magnetic field lines: A significant transport effect in studies of the energy spectra of impulsive flares
Using instrumentation on board the ACE spacecraft we describe short-time scale (~3 hour) variations observed in the arrival profiles of ~20 keV nucleon^(–1) to ~2 MeV nucleon^(–1) ions from impulsive solar flares. These variations occurred simultaneously across all energies and were generally not in coincidence with any local magnetic field or plasma signature. These features appear to be caused by the convection of magnetic flux tubes past the observer that are alternately filled and devoid of flare ions even though they had a common flare source at the Sun. In these particle events we therefore have a means to observe and measure the mixing of the interplanetary magnetic field due to random walk. In a survey of 25 impulsive flares observed at ACE between 1997 November and 1999 July these features had an average time scale of 3.2 hours, corresponding to a length of ~0.03 AU. The changing magnetic connection to the flare site sometimes lead to an incomplete observation of a flare at 1 AU; thus the field-line mixing is an important effect in studies of impulsive flare energy spectra
OLIVE FRUIT FLY: A threat to the South African olive industry?
Olive fruit fly (Bactrocera oleae) is the most serious pest of cultivated olives in the Mediterranean basin. to date we have not seen the same level of damage in south africa, but the question remained whether it poses a similar threat as the local olive industry expands. From this study it is clear that the climatic con- ditions during the period preceding harvest are un- favourable for rapid population growth of OFF in the Western Cape, in contrast to conditions in the coastal area of Trapani province in Sicily. Climate, and not parasitism, appears to be the main factor limiting OFF population levels in the Western Cape. While sporadic outbreaks of economically damaging OFF infestations can be expected in areas where the climatic conditions during a particular season or part of a season are favourable for OFF, the generally un- favourable climatic conditions mean that OFF is not expected to pose a similar threat to olive production in the Western Cape as it does in the Mediterranean basin
Dynamical effects of self-generated magnetic fields in cosmic ray modified shocks
Recent observations of greatly amplified magnetic fields () around supernova shocks are consistent with the predictions of the
non-linear theory of particle acceleration (NLT), if the field is generated
upstream of the shock by cosmic ray induced streaming instability. The high
acceleration efficiencies and large shock modifications predicted by NLT need
however to be mitigated to confront observations, and this is usually assumed
to be accomplished by some form of turbulent heating. We show here that
magnetic fields with the strength inferred from observations have an important
dynamical role on the shock, and imply a shock modification substantially
reduced with respect to the naive unmagnetized case. The effect appears as soon
as the pressure in the turbulent magnetic field becomes comparable with the
pressure of the thermal gas. The relative importance of this unavoidable effect
and of the poorly known turbulent heating is assessed. More specifically we
conclude that even in the cases in which turbulent heating may be of some
importance, the dynamical reaction of the field cannot be neglected, as instead
is usually done in most current calculations.Comment: 4 pages, 1 figure, accepted for publication in ApJ Letter
How efficient are coronal mass ejections at accelerating solar energetic particles?
The largest solar energetic particle (SEP) events are thought to be due to particle acceleration at a shock driven by a fast coronal mass ejection (CME). We investigate the efficiency of this process by comparing the total energy content of energetic particles with the kinetic energy of the associated CMEs. The energy content of 23 large SEP events from 1998 through 2003 is estimated based on data from ACE, GOES, and SAMPEX, and interpreted using the results of particle transport simulations and inferred longitude distributions. CME data for these events are obtained from SOHO. When compared to the estimated kinetic energy of the associated coronal mass ejections (CMEs), it is found that large SEP events can extract ~10% or more of the CME kinetic energy. The largest SEP events appear to require massive, very energetic CMEs
The contribution of supernova remnants to the galactic cosmic ray spectrum
The supernova paradigm for the origin of galactic cosmic rays has been deeply
affected by the development of the non-linear theory of particle acceleration
at shock waves. Here we discuss the implications of applying such theory to the
calculation of the spectrum of cosmic rays at Earth as accelerated in supernova
remnants and propagating in the Galaxy. The spectrum is calculated taking into
account the dynamical reaction of the accelerated particles on the shock, the
generation of magnetic turbulence which enhances the scattering near the shock,
and the dynamical reaction of the amplified field on the plasma. Most
important, the spectrum of cosmic rays at Earth is calculated taking into
account the flux of particles escaping from upstream during the Sedov-Taylor
phase and the adiabatically decompressed particles confined in the expanding
shell and escaping at later times. We show how the spectrum obtained in this
way is well described by a power law in momentum with spectral index close to
-4, despite the concave shape of the instantaneous spectra of accelerated
particles. On the other hand we also show how the shape of the spectrum is
sensible to details of the acceleration process and environment which are and
will probably remain very poorly known.Comment: 19 pages, 8 figures, published version (references updated
Synthesis of 3-D coronal-solar wind energetic particle acceleration modules
1. Introduction Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration. Large solar energetic particle (SEP) events are dangerous to astronauts and equipment. The ability to predict when and where large SEPs will occur is necessary in order to mitigate their hazards. The Coronal-Solar Wind Energetic Particle Acceleration (C-SWEPA) modeling effort in the NASA/NSF Space Weather Modeling Collaborative [Schunk, 2014] combines two successful Living With a Star (LWS) (http://lws. gsfc.nasa.gov/) strategic capabilities: the Earth-Moon-Mars Radiation Environment Modules (EMMREM) [Schwadron et al., 2010] that describe energetic particles and their effects, with the Next Generation Model for the Corona and Solar Wind developed by the Predictive Science, Inc. (PSI) group. The goal of the C-SWEPA effort is to develop a coupled model that describes the conditions of the corona, solar wind, coronal mass ejections (CMEs) and associated shocks, particle acceleration, and propagation via physics-based modules. Assessing the threat of SEPs is a difficult problem. The largest SEPs typically arise in conjunction with X class flares and very fast (\u3e1000 km/s) CMEs. These events are usually associated with complex sunspot groups (also known as active regions) that harbor strong, stressed magnetic fields. Highly energetic protons generated in these events travel near the speed of light and can arrive at Earth minutes after the eruptive event. The generation of these particles is, in turn, believed to be primarily associated with the shock wave formed very low in the corona by the passage of the CME (injection of particles from the flare site may also play a role). Whether these particles actually reach Earth (or any other point) depends on their transport in the interplanetary magnetic field and their magnetic connection to the shock
Interplanetary magnetic field line mixing deduced from impulsive solar flare particles
We have studied fine-scale temporal variations in the arrival profiles of ~20 keV nucleon^(-1) to ~2 MeV nucleon^(-1) ions from impulsive solar flares using instrumentation on board the Advanced Composition Explorer spacecraft at 1 AU between 1997 November and 1999 July. The particle events often had short-timescale (~3 hr) variations in their intensity that occurred simultaneously across all energies and were generally not in coincidence with any local magnetic field or plasma signature. These features appear to be caused by the convection of magnetic flux tubes past the observer that are alternately filled and devoid of flare ions even though they had a common flare source at the Sun. Thus, we have used the particles to study the mixing of the interplanetary magnetic field that is due to random walk. We deduce an average timescale of 3.2 hr for these features, which corresponds to a length of ~0.03 AU
- …
