7 research outputs found

    Performance investigation of solar assisted desiccant integrated Maisotsenko cycle cooler in subtropical climate conditions

    No full text
    Air conditioning has become an integral part of buildings due to climate change and global warming. About 40% of the world energy is being consumed by the building sector, with around 50% share of HVAC applications. In the current study, the simulation-based performance of solar desiccant integrated Maisotsenko cycle cooling system is analyzed in subtropical climate conditions. Initially, an office building model is developed in TRNBuild to generate hourly dynamic year around air-conditioning loads. Afterwards a simulation model of the SDI-MC is developed for maximum cooling capacity of 24 kW in TRNSYS and validated with experimental data. Additionally, an effective control strategy is also implemented to efficiently meet the air-conditioning demand. The main performance parameters include COP, cooling capacity, useful energy gain, efficiency of solar water heating system, auxiliary energy share, and solar fraction of the system. The result revealed that the COP of the system ranges from 0.78 to 1.13 due to variation in system inlet humidity and temperature. Regeneration temperature requirement varies from 60 °C to 78 °C while cooling capacity of system ranges from 8 KW to 24 KW. Similarly, the results revealed an average annual efficiency of evacuated tube solar thermal collectors around 35.80% with total annual energy gain of 113.96 MJ. Furthermore, the maximum annual auxiliary energy share required for regeneration is 12.5%

    Energy, exergy and economic (3E) analysis of flat-plate solar collector using novel environmental friendly nanofluid

    No full text
    Abstract The use of solar energy is one of the most prominent strategies for addressing the present energy management challenges. Solar energy is used in numerous residential sectors through flat plate solar collectors. The thermal efficiency of flat plate solar collectors is improved when conventional heat transfer fluids are replaced with nanofluids because they offer superior thermo-physical properties to conventional heat transfer fluids. Concentrated chemicals are utilized in nanofluids' conventional synthesis techniques, which produce hazardous toxic bi-products. The present research investigates the effects of novel green covalently functionalized gallic acid-treated multiwall carbon nanotubes-water nanofluid on the performance of flat plate solar collectors. GAMWCNTs are highly stable in the base fluid, according to stability analysis techniques, including ultraviolet–visible spectroscopy and zeta potential. Experimental evaluation shows that the thermo-physical properties of nanofluid are better than those of base fluid deionized water. The energy, exergy and economic analysis are performed using 0.025%, 0.065% and 0.1% weight concentrations of GAMWCNT-water at varying mass flow rates 0.010, 0.0144, 0.0188 kg/s. The introduction of GAMWCNT nanofluid enhanced the thermal performance of flat plate solar collectors in terms of energy and exergy efficiency. There is an enhancement in efficiency with the rise in heat flux, mass flow rate and weight concentration, but a decline is seen as inlet temperature increases. As per experimental findings, the highest improvement in energy efficiency is 30.88% for a 0.1% weight concentration of GAMWCNT nanofluid at 0.0188 kg/s compared to the base fluid. The collector's exergy efficiency increases with the rise in weight concentration while it decreases with an increase in flow rate. The highest exergy efficiency is achieved at 0.1% GAMWCNT concentration and 0.010 kg/s mass flow rate. GAMWCNT nanofluids have higher values for friction factor compared to the base fluid. There is a small increment in relative pumping power with increasing weight concentration of nanofluid. Performance index values of more than 1 are achieved for all GAMWCNT concentrations. When the solar thermal collector is operated at 0.0188 kg/s and 0.1% weight concentration of GAMWCNT nanofluid, the highest size reduction, 27.59%, is achieved as compared to a flat plate solar collector with water as a heat transfer fluid

    Small-Sized Parabolic Trough Collector System for Solar Dehumidification Application: Design, Development, and Potential Assessment

    No full text
    The current study presents a numerical and real-time performance analysis of a parabolic trough collector (PTC) system designed for solar air-conditioning applications. Initially, a thermodynamic model of PTC is developed using engineering equation solver (EES) having a capacity of around 3 kW. Then, an experimental PTC system setup is established with a concentration ratio of 9.93 using evacuated tube receivers. The experimental study is conducted under the climate of Taxila, Pakistan in accordance with ASHRAE 93-1986 standard. Furthermore, PTC system is integrated with a solid desiccant dehumidifier (SDD) to study the effect of various operating parameters such as direct solar radiation and inlet fluid temperature and its impact on dehumidification share. The experimental maximum temperature gain is around 5.2°C, with the peak efficiency of 62% on a sunny day. Similarly, maximum thermal energy gain on sunny and cloudy days is 3.07 kW and 2.33 kW, respectively. Afterwards, same comprehensive EES model of PTC with some modifications is used for annual transient analysis in TRNSYS for five different climates of Pakistan. Quetta revealed peak solar insolation of 656 W/m2 and peak thermal energy 1139 MJ with 46% efficiency. The comparison shows good agreement between simulated and experimental results with root mean square error of around 9%

    Energy Consumption Forecasting for University Sector Buildings

    No full text
    Reliable energy forecasting helps managers to prepare future budgets for their buildings. Therefore, a simple, easier, less time consuming and reliable forecasting model which could be used for different types of buildings is desired. In this paper, we have presented a forecasting model based on five years of real data sets for one dependent variable (the daily electricity consumption) and six explanatory variables (ambient temperature, solar radiation, relative humidity, wind speed, weekday index and building type). A single mathematical equation for forecasting daily electricity usage of university buildings has been developed using the Multiple Regression (MR) technique. Data of two such buildings, located at the Southwark Campus of London South Bank University in London, have been used for this study. The predicted test results of MR model are examined and judged against real electricity consumption data of both buildings for year 2011. The results demonstrate that out of six explanatory variables, three variables; surrounding temperature, weekday index and building type have significant influence on buildings energy consumption. The results of this model are associated with a Normalized Root Mean Square Error (NRMSE) of 12% for the administrative building and 13% for the academic building. Finally, some limitations of this study have also been discussed
    corecore