72 research outputs found

    Characterization of lung fibroblasts more than two decades after mustard gas exposure

    Get PDF
    Purpose: In patients with short-term exposure to the sulfur mustard gas, the delayed cellular effects on lungs have not been well understood yet. The lung pathology shows a dominant feature consistent with obliterative bronchiolitis, in which fibroblasts play a central role. This study aims to characterize alterations to lung fibroblasts, at the cellular level, in patients with delayed respiratory complications after short-term exposure to the sulfur mustard gas. Methods: Fibroblasts were isolated from the transbronchial biopsies of patients with documented history of exposure to single high-dose sulfur mustard during 1985-7 and compared with the fibroblasts of control subjects. Results: Compared with controls, patients' fibroblasts were thinner and shorter, and showed a higher population doubling level, migration capacity and number of filopodia. Sulfur mustard decreased the in vitro viability of fibroblasts and increased their sensitivity to induction of apoptosis, but did not change the rate of spontaneous apoptosis. In addition, higher expression of alpha smooth muscle actin showed that the lung's microenvironment in these patients is permissive for myofibroblastic differentiation. Conclusions: These findings suggest that in patients under the study, the delayed pulmonary complications of sulfur mustard should be considered as a unique pathology, which might need a specific management by manipulation of cellular components. © 2015 Pirzad Jahromi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Conductive chitosan/polyaniline hydrogel with cell-imprinted topography as a potential substrate for neural priming of adipose derived stem cells

    Get PDF
    Biophysical characteristics of engineered scaffolds such as topography and electroconductivity have shown potentially beneficial effects on stem cell morphology, proliferation, and differentiation toward neural cells. In this study, we fabricated a conductive hydrogel made from chitosan (CS) and polyaniline (PANI) with induced PC12 cell surface topography using a cell imprinting technique to provide both topographical properties and conductivity in a platform. The engineered hydrogel's potential for neural priming of rat adipose-derived stem cells (rADSCs) was determined in vitro. The biomechanical analysis revealed that the electrical conductivity, stiffness, and hydrophobicity of flat (F) and cell-imprinted (CI) substrates increased with increased PANI content in the CS/PANI scaffold. The conductive substrates exhibited a lower degradation rate compared to non-conductive substrates. According to data obtained from F-actin staining and AFM micrographs, both CI(CS) and CI(CS-PANI) substrates induced the morphology of rADSCs from their irregular shape (on flat substrates) into the elongated and bipolar shape of the neuronal-like PC12 cells. Immunostaining analysis revealed that both CI(CS) and CI (CS-PANI) significantly upregulated the expression of GFAP and MAP2, two neural precursor-specific genes, in rADSCs compared with flat substrates. Although the results reveal that both cell-imprinted topography and electrical conductivity affect the neural lineage differentiation, some data demonstrate that the topography effects of the cell-imprinted surface have a more critical role than electrical conductivity on neural priming of ADSCs. The current study provides new insight into the engineering of scaffolds for nerve tissue engineering. © 2021 The Royal Society of Chemistry

    Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage

    No full text
    The aim of this work is to determine the mechanical and tribological behavior of V–C–N coatings deposited on industrial steel substrates (AISI 8620) by using carbon–nitride coatings as a protective materials.Метою роботи було визначення механічної та трибологічної поведінки V–C–N-покриттів, осаджених на сталеві (AISI 8620) підкладки, для використання як захисні матеріали.Целью работы было определение механического и трибологического поведения V–C–N-покрытий, осажденных на стальные (AISI 8620) подложки, для использования как защитные материалы.This research was supported by Universidad Militar Nueva Granada, contract number ING-1775-2015, Universidad del Quindío and the CIC biomaGUNE, Platform Manager – Surface Analysis and Fabrication, Spain

    Bacteriophage based biosensors: Trends, outcomes and challenges

    Get PDF
    Foodborne pathogens are one of the main concerns in public health, which can have a serious impact on community health and health care systems. Contamination of foods by bacterial pathogens (such as Staphylococcus aureus, Streptococci, Legionella pneumophila, Escherichia coli, Campylobacter jejuni and Salmonella typhimurium) results in human infection. A typical example is the current issue with Coronavirus, which has the potential for foodborne transmission and ruling out such concerns is often difficult. Although, the possible dissemination of such viruses via the food chain has been raised. Standard bacterial detection methods require several hours or even days to obtain the results, and the delay may result in food poisoning to eventuate. Conventional biochemical and microbiological tests are expensive, complex, time-consuming and not always reliable. Therefore, there are urgent demands to develop simple, cheap, quick, sensitive, specific and reliable tests for the detection of these pathogens in foods. Recent advances in smart materials, nanomaterials and biomolecular modeling have been a quantum leap in the development of biosensors in overcoming the limitations of a conventional standard laboratory assay. This research aimed to critically review bacteriophage-based biosensors, used for the detection of foodborne pathogens, as well as their trends, outcomes and challenges are discussed. The future perspective in the use of simple and cheap biosensors is in the development of lab-on-chips, and its availability in every household to test the quality of their food. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Optimization of decellularized human placental macroporous scaffolds for spermatogonial stem cells homing

    Get PDF
    Decellularized scaffolds have been found to be excellent platforms for tissue engineering applications. The attempts are still being made to optimize a decellularization protocol with successful removal of the cells with minimal damages to extracellular matrix components. We examined twelve decellularization procedures using different concentrations of Sodium dodecyl sulfate and Triton X-100 (alone or in combination), and incubation time points of 15 or 30 min. Then, the potential of the decellularized scaffold as a three-dimensional substrate for colony formation capacity of mouse spermatogonial stem cells was determined. The morphological, degradation, biocompatibility, and swelling properties of the samples were fully characterized. The 0.5/30 SDS/Triton showed optimal decellularization with minimal negative effects on ECM (P � 0.05). The swelling ratios increased with the increase of SDS and Triton concentration and incubation time. Only 0.5/15 and 30 SDS showed a significant decrease in the SSCs viability compared with other groups (P < 0.05). The SSCs colony formation was clearly observed under SEM and H&E stained slides. The cells infiltrated into the subcutaneously implanted scaffold at days 7 and 30 post-implantation with no sign of graft rejection. Our data suggest the 0.5/30 SDS/Triton as an excellent platform for tissue engineering and reproductive biology applications. Figure not available: see fulltext. © 2021, The Author(s)

    Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro

    Get PDF
    Background: Nowadays, the number of cancer survivors is significantly increasing as a result of efficient chemo/radio therapeutic treatments. Female cancer survivors may suffer from decreased fertility. In this regard, different fertility preservation techniques were developed. Artificial ovary is one of these methods suggested by several scientific groups. Decellularized ovarian cortex has been introduced as a scaffold in the field of human fertility preservation. This study was carried out to compare decellularization of the ovarian scaffold by various protocols and evaluate the follicle survival in extracellular matrix (ECM)-alginate scaffold. Results: The micrographs of H&E and DAPI staining confirmed successful decellularization of the ovarian cortex in all experimental groups, but residual DNA content in SDS-Triton group was significantly higher than other groups (P < 0.05). SEM images demonstrated that complex fiber network and porosity structure were maintained in all groups. Furthermore, elastin and collagen fibers were observed in all groups after decellularization process. MTT test revealed higher cytobiocompatibility of the SDS-Triton-Ammonium and SDS-Triton decellularized scaffolds compared with SDS groups. Compared to the transferred follicles into the sodium alginate (81), 85.9 of the transferred follicles into the decellularized scaffold were viable after 7 days of cultivation (P = 0.04). Conclusion: Although all the decellularization procedures was effective in removal of cells from ovarian cortex, SDS-Triton-Ammonium group showed less residual DNA content with higher cytobiocompatibility for follicles when compared with other groups. In addition, the scaffold made from ovarian tissues decellularized using SDS-Triton-Ammonium and sodium alginate is suggested as a potential 3D substrate for in vitro culture of follicles for fertility preservation. © 2021, The Author(s)

    The in vivo effect of Lacto-N-neotetraose (LNnT) on the expression of type 2 immune response involved genes in the wound healing process

    Get PDF
    Lacto-n-neotatraose (LNnT) oligosaccharide shows properties such as anti-inflammatory, type 2 immune response induction, induced angiogenesis, and anti-bacterial effects. Here, we hypothesized that the application of LnNT in the skin full-thickness wound can accelerate the healing process through its anti-inflammatory effect as well as induction of type 2 immune responses. In this study, we evaluated the cell viability of fibroblasts in the presence of LNnT. The full-thickness wound model was created by punch biopsy. The mice were treated intradermaly with LNnT at the concentrations of 100 and 200 µg or PBS as a control group. The wounds samples were compared based on the macroscopic and histological evaluations. The amount of collagen deposition and expression of genes involved in type 2 immunity were measured by the hydroxyproline assay and real time PCR method, respectively. Our results showed that LNnT had no negative effect on the cell viability of fibroblasts. LNnT increased the wound closure rate on day 7 post-wounding. H&E stain analysis revealed that mice treated with 200 µg LNnT exhibited better healing score, follicle formation, and lower epidermal thickness index. The mice treated with LNnT exhibited a lower collagen deposition on day 21 and higher collagen content on days 7 and 14 post-treatment. The LNnT groups also exhibited a lower number of neutrophils and a higher number of basal cells and fibroblasts. The expression rate of IL-10, IL-4, and IL-13 was higher in the LNnT groups. These results showed the high potential of LNnT for use in treatment of full-thickness wounds. © 2020, The Author(s)

    The prevalence of fungal infections in a level I iranian burn hospital

    No full text
    Background: With significant increase in incidence of fungal infections in burn victims, determination of pattern of fungal infections and colonization is required to allow medical staff to begin proper empirical antibiotic therapy in early stages of septic episodes. Objective: To determine the current infection profile (especially fungal profile) of burn wounds in a level I burn care center in Tehran. Methods: A cross-sectional survey was conducted from January 2008 to September 2009 on burn wound patients admitted in Shahid Motahari Burn Hospital, Tehran, Iran. Wound swab cultures and tissue specimens from 869 patients (634 male and 235 female) out 4083 were taken and cultured in Sabouraud dextrose agar. The fungal organisms were then identified with macroscopic and microscopic structures. Results: The incidence of fungal infection (not colonization) among the patients of this study was 13. Candida albicans was identified as the dominant fungal agent (45) followed by Aspergillus fumigatus (35), Penicillium (8), Aspergillus niger (5), and other fungal organisms (7). Conclusion: With such high mortality rate and an increasing incidence of fungal wound infections, fungal infections should be a top infectious complication of burn patients and should be managed immediately and aggressively

    How preparation and preservation procedures affect the properties of amniotic membrane? How safe are the procedures?

    No full text
    Human amniotic membrane (AM) has been widely used for tissue engineering and regenerative medicine applications. AM has many favorable characteristics such as high biocompatibility, antibacterial activity, anti-scarring property, immunomodulatory effects, anti-cancer behavior and contains several growth factors that make it an excellent natural candidate for wound healing. To date, various methods have been developed to prepare, preserve, cross-link and sterilize the AM. These methods remarkably affect the morphological, physico-chemical and biological properties of AM. Optimization of an effective and safe method for preparation and preservation of AM for a specific application is critical. In this review, the isolation, different methods of preparation, preservation, cross-linking and sterilization as well as their effects on properties of AM are well discussed. For each section, at least one effective and safe protocol is described in detail. © 2019 Elsevier Ltd and ISB

    In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds

    No full text
    In this study, three-dimensional hydroxyapatite/silk fibroin (HAp/SF) nanocomposite scaffolds were successfully prepared through layer solvent casting combined with the freeze-drying technique for tissue engineering applications. Various SF aqueous concentrations, ranging from 2.5 to 10, were used to control the physicochemical properties of the prepared scaffolds. Biologic responses of the rat bone marrow stromal cells (rBMSCs) to the HAp/SF scaffolds were examined by culturing the cells within them. In addition, biodegradation and biocompatibility of the scaffolds were evaluated in vitro and in vivo, respectively. Among the prepared scaffolds, HAp/SF-2.5 was the most brittle sample and showed porous structure with lowest mechanical properties. The average pore diameters were 350 ± 67 and 112 ± 89 μm and decreased with the increase in the SF concentration from 5 to 10, respectively. The pores formed in the scaffolds, made up of the 5 SF, were more uniform and regular than those of the scaffolds made up of 5 and 10 SF. The HAp/SF scaffolds did not change the rBMSCs viability and were not cytotoxic compared with the control sample. The scanning electron microscopy micrographs showed that the cells migrated into the pores and well attached to the scaffolds and their cytoplasm was extended in all directions, indicating a promising cell adhesion, high biocompatibility, and no cytotoxicity of the HAp/SF-5 nanocomposite scaffolds. Subcutaneous implantation of the HAp/SF-5 scaffolds in rat models suggested an excellent biocompatibility. All data obtained from this study suggest the potential use of the HAp/SF-5 for hard tissue engineering. © 2014 International Union of Biochemistry and Molecular Biology, Inc
    corecore