13 research outputs found

    Fractionnement par voie sèche de la biomasse ligno-cellulosique (broyage poussé de la paille de blé et effets sur ses bioconversions)

    Get PDF
    Dans le contexte de la bioraffinerie végétale pour la production de molécules et d'énergie, des prétraitements sont nécessaires pour augmenter la réactivité de la biomasse ligno-cellulosique. Cette thèse s'insère dans une thématique dont l'objectif général est d'établir les bases d'une raffinerie du végétal par des procédés par voie sèche. Cette étude a pour objectif de développer et comprendre le fractionnement mécanique poussé de la paille de blé jusqu'à des tailles sub-millimétriques et d'évaluer les effets sur des procédés de bioconversions énergétiques. La paille de blé présente une grande hétérogénéité à plusieurs niveaux d'échelle (du cm au m). Un diagramme de broyage multi-étapes à l'échelle pilote (>1kg) a permis d'obtenir une large gamme de tailles de particules, par 3 modes de sollicitation distincts: i) broyages à grille sélective produisant des tailles du grossier (800 m) au fin (50 m), ii) broyage à jet d'air (ultrafin, ~20 m) et iii) broyage à boulets (ultrafin, ~10 m). Une méthodologie d'analyse morphologique des particules a été développée par analyse d'images de microscopie optique. La paille soumise aux mécanismes complexes de rupture lors de broyages produit une forte variabilité des formes et compositions des particules. L'analyse multiple de co-inertie a permis d'évaluer de façon globale les morphologies des particules. Globalement, le broyage diminue la taille et les facteurs de forme des particules, avec quelques exceptions dues aux configurations matérielles. La dégradabilité enzymatique (saccharification) des poudres produites a été améliorée par la réduction de la taille des particules. Jusqu'à ~100 m la solubilisation des polysaccharides augmente puis se stabilise à 36 % des polysaccharides totaux et 40 % de la cellulose. Seuls les échantillons issus du broyage à boulets dépassent cette limite et atteignent 46 % d'hydrolyse des polysaccharides totaux et 72 % de la cellulose. Ceci est lié à une augmentation de l'efficacité enzymatique due à la diminution de la cristallinité de la cellulose (de 22 à 13%). Ces résultats du broyage à boulets sont comparables à ceux de l'explosion à la vapeur, avec une meilleure préservation des hémicelluloses. Cette amélioration d'efficacité enzymatique s'est traduite par des dégradations anaérobies (biogaz) accélérées et légèrement augmentées (cas du broyeur à boulets). La décomposition aérobie dans le sol a été améliorée par le broyage grossier, mais les broyages plus fins n'ont pas entrainé de gain. Les caractéristiques de la paille broyée peuvent varier selon l'intensité et le mode de broyage. Bien que tous les broyages permettent la réduction de la taille, le broyage à grilles et le broyage à jet d'air n'engendrent pas de changements dans la structure fine des polymères pariétaux. Seul le broyage à boulets a engendré des changements de la structure interne des particules notamment en réduisant la cristallinité de la cellulose et en solubilisant partiellement les hémicelluloses. Ces résultats permettent de mettre en évidence que la fragmentation mécanique poussée par voie sèche est une alternative possible aux prétraitements utilisés en raffinerie végétale.In a context of plant biorefinery for the production of molecules and energy, pretreatments are necessary to increase the reactivity of the lignocellulosic biomass. This thesis is part of a general project aiming to establish the bases for a dry plant refinery. This study aimed to develop and understand advanced mechanical fractionation of wheat straw down to sub-millimeter sizes and to assess its effects on bioconversion processes for bioenergy. Wheat straw exhibited a high heterogeneity at several scale levels (from cm to m). A multistep diagram of dry grinding at pilot-scale (> 1 kg) produced a wide range of particle sizes by three distinct mode of action: i) sieve-based grinding producing particle sizes from coarse (800 m) to fine (50 m), ii) air-jet milling (ultra-fine, ~ 20 m) and iii) ball milling (ultra-fine, ~ 10 "m). A morphological analysis of particles was developed by image analysis from light microscopy. Subjecting wheat straw to the complex breaking mechanisms during grinding produced particles highly variable in shapes and compositions. A multiple co-inertia analysis allowed the evaluation of the overall particle morphologies. Generally, grinding reduced the size and shape descriptors of particles, with some exceptions due to equipment configurations. The enzymatic degradability (saccharification) of produced powders was improved by reducing their particle size. Until ~ 100 m the polysaccharides solubilisation was increased and then stabilised at 36% total polysaccharides and 40% cellulose. Only samples from ball milling overcome this limit and attained hydrolysis yields of 46% total polysaccharides and 72% cellulose. This is due to an increase in enzymatic efficiency by the reduction of cellulose crystallinity (from 22 to 13%). These results of ball milling are comparable to those of steam explosion process, with a better preservation of hemicelluloses. This improved enzymatic efficiency resulted in faster and slightly more extensive (ball milling case) anaerobic degradations (biogas). Aerobic decomposition in the soil was improved by coarse grinding, but finer grinding did not result in a further increase. The characteristics of ground straw varied depending on grinding intensity and mode. Although all grindings could reduce the size, sieve-based grinding and air-jet milling did not allow changes in the fine structure of cell wall polymers. Only ball milling led to changethe internal structure of particles especially reducing cellulose crystallinity and partially solubilising hemicelluloses. These results demonstrate that advanced mechanical fragmentation by dry processes is a possible alternative for pretreatments in a plant refineryMONTPELLIER-SupAgro La Gaillarde (341722306) / SudocSudocFranceF

    Automated assay for screening the enzymatic release of reducing sugars from micronized biomass

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass (<it>i.e</it>., second generation bioethanol), it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties. This demands the set-up of high-throughput screening methods. Several methods have been devised all using microplates in the industrial SBS format. Although this size reduction and standardization has greatly improved the screening process, the published methods comprise one or more manual steps that seriously decrease throughput. Therefore, we worked to devise a screening method devoid of any manual steps.</p> <p>Results</p> <p>We describe a fully automated assay for measuring the amount of reducing sugars released by biomass-degrading enzymes from wheat-straw and spruce. The method comprises two independent and automated steps. The first step is the making of "substrate plates". It consists of filling 96-well microplates with slurry suspensions of micronized substrate which are then stored frozen until use. The second step is an enzymatic activity assay. After thawing, the substrate plates are supplemented by the robot with cell-wall degrading enzymes where necessary, and the whole process from addition of enzymes to quantification of released sugars is autonomously performed by the robot. We describe how critical parameters (amount of substrate, amount of enzyme, incubation duration and temperature) were selected to fit with our specific use. The ability of this automated small-scale assay to discriminate among different enzymatic activities was validated using a set of commercial enzymes.</p> <p>Conclusions</p> <p>Using an automatic microplate sealer solved three main problems generally encountered during the set-up of methods for measuring the sugar-releasing activity of plant cell wall-degrading enzymes: throughput, automation, and evaporation losses. In its present set-up, the robot can autonomously process 120 triplicate wheat-straw samples per day. This throughput can be doubled if the incubation time is reduced from 24 h to 4 h (for initial rates measurements, for instance). This method can potentially be used with any insoluble substrate that is micronizable. A video illustrating the method can be seen at the following URL: <url>http://www.youtube.com/watch?v=NFg6TxjuMWU</url></p

    Dry fractionation of lignocellulosic biomass : advanced grinding wheat straw and effects on its bioconversions

    No full text
    Dans le contexte de la bioraffinerie végétale pour la production de molécules et d'énergie, des prétraitements sont nécessaires pour augmenter la réactivité de la biomasse ligno-cellulosique. Cette thèse s'insère dans une thématique dont l'objectif général est d'établir les bases d'une raffinerie du végétal par des procédés par voie sèche. Cette étude a pour objectif de développer et comprendre le fractionnement mécanique poussé de la paille de blé jusqu'à des tailles sub-millimétriques et d'évaluer les effets sur des procédés de bioconversions énergétiques. La paille de blé présente une grande hétérogénéité à plusieurs niveaux d'échelle (du cm au µm). Un diagramme de broyage multi-étapes à l'échelle pilote (>1kg) a permis d'obtenir une large gamme de tailles de particules, par 3 modes de sollicitation distincts: i) broyages à grille sélective produisant des tailles du grossier (800 µm) au fin (50 µm), ii) broyage à jet d'air (ultrafin, ~20 µm) et iii) broyage à boulets (ultrafin, ~10 µm). Une méthodologie d'analyse morphologique des particules a été développée par analyse d'images de microscopie optique. La paille soumise aux mécanismes complexes de rupture lors de broyages produit une forte variabilité des formes et compositions des particules. L'analyse multiple de co-inertie a permis d'évaluer de façon globale les morphologies des particules. Globalement, le broyage diminue la taille et les facteurs de forme des particules, avec quelques exceptions dues aux configurations matérielles. La dégradabilité enzymatique (saccharification) des poudres produites a été améliorée par la réduction de la taille des particules. Jusqu'à ~100 µm la solubilisation des polysaccharides augmente puis se stabilise à 36 % des polysaccharides totaux et 40 % de la cellulose. Seuls les échantillons issus du broyage à boulets dépassent cette limite et atteignent 46 % d'hydrolyse des polysaccharides totaux et 72 % de la cellulose. Ceci est lié à une augmentation de l'efficacité enzymatique due à la diminution de la cristallinité de la cellulose (de 22 à 13%). Ces résultats du broyage à boulets sont comparables à ceux de l'explosion à la vapeur, avec une meilleure préservation des hémicelluloses. Cette amélioration d'efficacité enzymatique s'est traduite par des dégradations anaérobies (biogaz) accélérées et légèrement augmentées (cas du broyeur à boulets). La décomposition aérobie dans le sol a été améliorée par le broyage grossier, mais les broyages plus fins n'ont pas entrainé de gain. Les caractéristiques de la paille broyée peuvent varier selon l'intensité et le mode de broyage. Bien que tous les broyages permettent la réduction de la taille, le broyage à grilles et le broyage à jet d'air n'engendrent pas de changements dans la structure fine des polymères pariétaux. Seul le broyage à boulets a engendré des changements de la structure interne des particules notamment en réduisant la cristallinité de la cellulose et en solubilisant partiellement les hémicelluloses. Ces résultats permettent de mettre en évidence que la fragmentation mécanique poussée par voie sèche est une alternative possible aux prétraitements utilisés en raffinerie végétale.In a context of plant biorefinery for the production of molecules and energy, pretreatments are necessary to increase the reactivity of the lignocellulosic biomass. This thesis is part of a general project aiming to establish the bases for a dry plant refinery. This study aimed to develop and understand advanced mechanical fractionation of wheat straw down to sub-millimeter sizes and to assess its effects on bioconversion processes for bioenergy. Wheat straw exhibited a high heterogeneity at several scale levels (from cm to μm). A multistep diagram of dry grinding at pilot-scale (> 1 kg) produced a wide range of particle sizes by three distinct mode of action: i) sieve-based grinding producing particle sizes from coarse (800 μm) to fine (50 μm), ii) air-jet milling (ultra-fine, ~ 20 μm) and iii) ball milling (ultra-fine, ~ 10 "m). A morphological analysis of particles was developed by image analysis from light microscopy. Subjecting wheat straw to the complex breaking mechanisms during grinding produced particles highly variable in shapes and compositions. A multiple co-inertia analysis allowed the evaluation of the overall particle morphologies. Generally, grinding reduced the size and shape descriptors of particles, with some exceptions due to equipment configurations. The enzymatic degradability (saccharification) of produced powders was improved by reducing their particle size. Until ~ 100 μm the polysaccharides solubilisation was increased and then stabilised at 36% total polysaccharides and 40% cellulose. Only samples from ball milling overcome this limit and attained hydrolysis yields of 46% total polysaccharides and 72% cellulose. This is due to an increase in enzymatic efficiency by the reduction of cellulose crystallinity (from 22 to 13%). These results of ball milling are comparable to those of steam explosion process, with a better preservation of hemicelluloses. This improved enzymatic efficiency resulted in faster and slightly more extensive (ball milling case) anaerobic degradations (biogas). Aerobic decomposition in the soil was improved by coarse grinding, but finer grinding did not result in a further increase. The characteristics of ground straw varied depending on grinding intensity and mode. Although all grindings could reduce the size, sieve-based grinding and air-jet milling did not allow changes in the fine structure of cell wall polymers. Only ball milling led to changethe internal structure of particles especially reducing cellulose crystallinity and partially solubilising hemicelluloses. These results demonstrate that advanced mechanical fragmentation by dry processes is a possible alternative for pretreatments in a plant refiner

    Successive centrifugal grinding and sieving of wheat straw

    No full text
    Contact: [email protected] plant biomass may allowthe lignocellulosic assembly to become more reactive/accessible by providing energy for polymer dissociation, increasing contact surface (particle size reduction) and reducing cellulose crystallinity. Moreover lignocellulosic composition varies considerably affecting biomass processability as resource for bio-based energies, composite materials and chemicals. The aims of this work were: (i) to analyse composition of wheat anatomic parts present into wheat straw, (ii) to characterize the behaviour of major components upon successive centrifugal grinding steps (2 mm-screen cutting milling followed by 4-step centrifugal grinding) and (iii) to relate particle size distribution and component concentrations into the finest sized product (0.12 mm-screen ground). The powders from successive centrifugal grindings were sieved and their chemical compositions were determined. Ground straw powders were heterogeneous according to different particle aspects: size, shapes and roughness. In general fractionswith lower particle size had higher ash and protein contents whereas cellulose contents are higher in the larger fractions. Wheat straw exhibited a non homogeneous reduction behaviour when finely ground. Fraction compositions were only slightly distinct suggesting that although sieving can constitute a preliminary fractionation step, it is necessary to reduce still more the particle size to reach more effective dissociation of macromolecules assembl

    Wheat straw milling effect on biogas production

    No full text
    International audienceIn France, wheat straw represents an important part of the crop residues which could be used as renewable energy source biomass. This publication aims at studying the impact of an ultra-fine shredding, named micronisation, of straw on its biodegradability under mesophilic anaerobic conditions. For that purpose, biological methane potential (BMP) tests were performed on various fractions of wheat straw resulting from successive shredding processes. The first one results from a coarse cutting mill, the following were obtained thanks to centrifugal milling. The fractions vary between 804 and 45μm of mean diameter. All results are discussed both in terms of maximal methane potential and in terms of kinetic rates. The main conclusion is that shredding does not improve methane potential of straw but have a significant influence on the biodegradation kinetics. Specific analytical techniques (Infra red spectroscopy, water distribution analysis...) based on biochemical and physical parameters were performed to characterize the fractions and explain these results

    Effects of grinding processes on enzymatic degradation of wheat straw

    No full text
    UMR 1208 IATE: Axe 1 Fractionnement des Agro ressources : bases structurales et physicochimiques ; procédés de broyage, extraction et de séparation Corresponding author. fax: +33 4 99 61 30 76. E-mail address: [email protected] (X. Rouau).The effectiveness of wheat straw fine to ultra-fine grindings at pilot scale was studied. The produced powders were characterised by their particle-size distribution (laser diffraction), crystallinity (WAXS) and enzymatic degradability (Trichoderma reesei enzymatic cocktail). A large range of wheat-straw powders was produced: from coarse (median particle size similar to 800 mu m) to fine particles (similar to 50 mu m) using sieve-based grindings, then ultra-fine particles similar to 20 mu m by jet milling and similar to 10 mu m by ball milling. The wheat straw degradability was enhanced by the decrease of particle size until a limit: similar to 100 mu m. up to 36% total carbohydrate and 40% glucose hydrolysis yields. Ball milling samples overcame this limit up to 46% total carbohydrate and 72% glucose yields as a consequence of cellulose crystallinity reduction (from 22% to 13%). Ball milling appeared to be an effective pretreatment with similar glucose yield and superior carbohydrate yield compared to steam explosion pretreatment

    Effects of grinding processes on anaerobic digestion of wheat straw

    No full text
    Lignocellulosic biomass represents an important part of the agricultural wastes that can be transformed into a renewable energy. The biodegradability and biodegradation kinetics of ultra-finely ground wheat straw was studied under mesophilic anaerobic conditions. Biological methane potential (BMP) tests and batch reactors were performed on samples resulting from successive grinding processes (759–48 μm). The main conclusion is that micronization do not improve methane yield but has a positive effect on the biodegradation kinetics. In addition, the results presented here showed for the first time that no significant increase of kinetics was observed below a size threshold value around 200 μm. This can be explained by the modifications in the lignocellulosic network from 759 to 200 μm but not below 200 μm. Therefore, micronization, increasing significantly the kinetics of anaerobic digestion, can decrease the retention time or the size of the digesters to treat the same quantity of waste
    corecore