378 research outputs found

    Critical roles of endogenous glucocorticoids for disease tolerance in malaria

    No full text
    During malaria, the hypothalamic-pituitary-adrenal (HPA) axis is activated and glucocorticoid (GC) levels are increased, but their essential roles have been largely overlooked. GCs are decisive for systemic regulation of vital processes such as immune responses, vascular function, and metabolism, which are crucial in malaria. Here, we introduce GCs in general, followed by their versatile roles for disease tolerance in malaria. A complementary comparison is provided with their role in sepsis. Finally, potential translational implications are considered. The failed clinical trials of dexamethasone against cerebral malaria in the past have diminished the interest in GCs in malaria. However, the issue of relative corticosteroid insufficiency has barely been explored in malaria patients, but may hold promise for a better understanding and treatment of specific malaria complications

    Inhibition of MMP-9-dependent degradation of gelatin, but not other MMP-9 substrates, by the MMP-9 hemopexin domain blades 1 and 4

    Get PDF
    11 p.-5 fig.-1 tab.Degradation and remodeling of the extracellular matrix by matrix metalloproteinases (MMPs) plays important roles in normal development, inflammation, and cancer. MMP-9 efficiently degrades the extracellular matrix component gelatin, and the hemopexin domain of MMP-9 (PEX9) inhibits this degradation. To study the molecular basis of this inhibition, we generated GST fusion proteins containing PEX9 or truncated forms corresponding to specific structural blades (B1-B4) of PEX9. GST-PEX9 inhibited MMP-9-driven gelatin proteolysis, measured by gelatin zymography, FITC-gelatin conversion, and DQ-gelatin degradation assays. However, GST-PEX9 did not prevent the degradation of other MMP-9 substrates, such as a fluorogenic peptide, αB crystalline, or nonmuscular actin. Therefore, PEX9 may inhibit gelatin degradation by shielding gelatin and specifically preventing its binding to MMP-9. Accordingly, GST-PEX9 also abolished the degradation of gelatin by MMP-2, confirming that PEX9 is not an MMP-9 antagonist. Moreover, GST-B4 and, to a lesser extent, GST-B1 also inhibited gelatin degradation by MMP-9, indicating that these regions are responsible for the inhibitory activity of PEX9. Accordingly, ELISAs demonstrated that GST-B4 and GST-B1 specifically bound to gelatin. Our results establish new functions of PEX9 attributed to blades B4 and B1 and should help in designing specific inhibitors of gelatin degradation.This work was supported by Grant SAF2012-31613 and Red Temática de Investigación Cooperativa en Cáncer Grant RD12/0036/0061 from the Ministry of Economy and Competitivity (Spain) (to A. G.-P.); by Grant S2010/ BMD-2314 (to A. G.-P.) from the Comunidad de Madrid/European Union;and by the Concerted Research Actions Grant GOA 2013–2015 and the fund for Scientific Research of Flanders (to G. O.).Peer reviewe

    Synergistic and selective stimulation of gelatinase B production in macrophages by lipopolysaccharide, trans-retinoic acid and CGP 41251, a protein kinase C regulator

    Get PDF
    AbstractThe production of gelatinase B by macrophages is relevant in the immunological and migratory functions of macrophages. CGP 41251, an inhibitor of protein kinase C (PKC), was found to stimulate the expression of gelatinase B in macrophages, as shown by the study of two different monocytic/macrophagic cell lines, mouse RAW 264.7 and human THP-1 cells. When human monocytis and rat peritoneal macrophages were treated with CGP 41251, insignificant increases of 10 and 25% were obtained. This can possibly be due to the presence of contaminating cells in these two enriched populations, since the CGP 41251 treatment of non-macrophagic cell lines inhibited their PMA-induced gelatinase B production. Taken together, these results suggest that the stimulatory effect of CGP 41251 is specific to cells of the monocytic lineage. Using RAW 264.7 cells as a model, the effect of CGP 41251 is additive to that obtained using lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA), as revealed by gelatin zymography and Northern blot analysis. The stimulatory effect of CGP 41251 on gelatinase B production in RAW 264.7 was: (a) inhibited by calphostin C (as is the LPS-induced response), indicating a PKC-dependence; (b) inhibited by dexamethasone (as opposed to the LPS-induced response); and (c) enhanced by addition of trans-retinoic acid (RA). In fact, RA can induce gelatinase B production, either alone or in synergy with LPS and/or CGP 41251, since the combination of the three agents gives the highest gelatinase B response, at both the protein and the mRNA levels. This represents an important observation considering that RA is now being tested as an anti-cancer agent and proposed for prevention studies

    Endothelial response to glucocorticoids in inflammatory diseases

    Get PDF
    The endothelium plays a crucial role in inflammation. A balanced control of inflammation requires the action of glucocorticoids (GCs), steroidal hormones with potent cell-specific anti-inflammatory properties. Besides the classic anti-inflammatory effects of GCs on leukocytes, recent studies confirm that endothelial cells also represent an important target for GCs. GCs regulate different aspects of endothelial physiology including expression of adhesion molecules, production of pro-inflammatory cytokines and chemokines, and maintenance of endothelial barrier integrity. However, the regulation of endothelial GC sensitivity remains incompletely understood. In this review, we specifically examine the endothelial response to GCs in various inflammatory diseases ranging from multiple sclerosis, stroke, sepsis, and vasculitis to atherosclerosis. Shedding more light on the cross talk between GCs and endothelium will help to improve existing therapeutic strategies and develop new therapies better tailored to the needs of patients

    Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis

    Get PDF
    The endothelial cell monolayer of cerebral vessels and its basement membrane (BM) are ensheathed by the astrocyte endfeet, the leptomeningeal cells, and their associated parenchymal BM, all of which contribute to establishment of the blood–brain barrier (BBB). As a consequence of this unique structure, leukocyte penetration of cerebral vessels is a multistep event. In mouse experimental autoimmune encephalomyelitis (EAE), a widely used central nervous system inflammatory model, leukocytes first penetrate the endothelial cell monolayer and underlying BM using integrin β1-mediated processes, but mechanisms used to penetrate the second barrier defined by the parenchymal BM and glia limitans remain uninvestigated. We show here that macrophage-derived gelatinase (matrix metalloproteinase [MMP]-2 and MMP-9) activity is crucial for leukocyte penetration of the parenchymal BM. Dystroglycan, a transmembrane receptor that anchors astrocyte endfeet to the parenchymal BM via high affinity interactions with laminins 1 and 2, perlecan and agrin, is identified as a specific substrate of MMP-2 and MMP-9. Ablation of both MMP-2 and MMP-9 in double knockout mice confers resistance to EAE by inhibiting dystroglycan cleavage and preventing leukocyte infiltration. This is the first description of selective in situ proteolytic damage of a BBB-specific molecule at sites of leukocyte infiltration

    Differential inhibition of activity, activation and gene expression of MMP-9 in THP-1 cells by azithromycin and minocycline versus bortezomib : a comparative study

    Get PDF
    Gelatinase B or matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) is increased in inflammatory processes and cancer, and is associated with disease progression. In part, this is due to MMP-9-mediated degradation of extracellular matrix, facilitating influx of leukocytes into inflamed tissues and invasion or metastasis of cancer cells. MMP-9 is produced as proMMP-9 and its propeptide is subsequently removed by other proteases to generate proteolytically active MMP-9. The significance of MMP-9 in pathologies triggered the development of specific inhibitors of this protease. However, clinical trials with synthetic inhibitors of MMPs in the fight against cancer were disappointing. Reports on active compounds which inhibit MMP-9 should be carefully examined in this regard. In a considerable set of recent publications, two antibiotics (minocycline and azythromycin) and the proteasome inhibitor bortezomib, used in cancers, were reported to inhibit MMP-9 at different stages of its expression, activation or activity. The current study was undertaken to compare and to verify the impact of these compounds on MMP-9. With exception of minocycline at high concentrations (>100 μM), the compounds did not affect processing of proMMP-9 into MMP-9, nor did they affect direct MMP-9 gelatinolytic activity. In contrast, azithromycin specifically reduced MMP-9 mRNA and protein levels without affecting NF-κB in endotoxin-challenged monocytic THP-1 cells. Bortezomib, although being highly toxic, had no MMP-9-specific effects but significantly upregulated cyclooxygenase-2 (COX-2) activity and PGE2 levels. Overall, our study clarified that azithromycin decreased the levels of MMP-9 by reduction of gene and protein expression while minocycline inhibits proteolytic activity at high concentrations

    Role of C‐X‐C chemokines as regulators of angiogenesis in lung cancer

    Full text link
    Lung cancer is the leading cause of malignancy‐related mortality in the U.S. and is predicted to increase over the remainder of this decade. Despite attempts to advance early diagnosis and use combination therapies, the clinical response of this cancer yields an overall 5‐year survival rate of less than 15%. Clearly, new strategies for therapy are indicated. Although carcinogenesis is complex, tumor growth beyond 1–2 mm3 is dependent on angiogenesis. One of the potential mechanisms that allows for tumorigenesis is dysregulation of the balance of angiogenic and angiostatic factors that favors net neovascularization within the primary tumor. Numerous studies have investigated the role of a variety of molecules in the regulation of angiogenesis. Recently, interleukin‐8 (IL‐8), a member of the C‐X‐C chemokine family, has been found to be an angiogenic factor. In contrast, platelet factor 4 (PF4), another C‐X‐C chemokine, has been shown to have angiostatic properties. It is interesting that the major structural difference between IL‐8 and PF4 is the presence of the NH2‐terminal ELR (Glu‐Leu‐Arg) motif that precedes the first cysteine amino acid residue of IL‐8 and is important in ligand/receptor interactions. We hypothesize that angiogenesis associated with tumorigenesis is dependent on members of the C‐X‐C chemokine family acting as either angiogenic or angiostatic factors. This paradigm predicts that the biological balance in the expression of these C‐X‐C chemokines dictates whether the neoplasm grows and develops metastatic potential or regresses. In this review we discuss our recent laboratory findings that support this contention and suggest that further elucidation of the biology of C‐X‐C chemokines in the context of neovascularization of nonsmall cell lung cancer will permit novel targeted therapy aimed specifically at attenuating tumor growth and metastasis. J. Leukoc. Biol. 57: 752–762; 1995.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141888/1/jlb0752.pd
    corecore