26 research outputs found

    Molecular portrait of chronic joint diseases: Defining endotypes toward personalized medicine.

    Get PDF
    Joint diseases affect hundreds of millions of people worldwide, and their prevalence is constantly increasing. To date, despite recent advances in the development of therapeutic options for most rheumatic conditions, a significant proportion of patients still lack efficient disease management, considerably impacting their quality of life. Through the spectrum of rheumatoid arthritis (RA), psoriatic arthritis (PsA), and osteoarthritis (OA) as quintessential and common rheumatic diseases, this review first provides an overview of their epidemiological and clinical features before exploring how the better definition of clinical phenotypes has helped their clinical management. It then discusses the recent progress in understanding the diversity of endotypes underlying disease phenotypes. Finally, this review highlights the current challenges of implementing molecular endotypes towards the personalized management of RA, PsA and OA patients in the future

    Axl and MerTK regulate synovial inflammation and are modulated by IL-6 inhibition in rheumatoid arthritis.

    Get PDF
    The TAM tyrosine kinases, Axl and MerTK, play an important role in rheumatoid arthritis (RA). Here, using a unique synovial tissue bioresource of patients with RA matched for disease stage and treatment exposure, we assessed how Axl and MerTK relate to synovial histopathology and disease activity, and their topographical expression and longitudinal modulation by targeted treatments. We show that in treatment-naive patients, high AXL levels are associated with pauci-immune histology and low disease activity and inversely correlate with the expression levels of pro-inflammatory genes. We define the location of Axl/MerTK in rheumatoid synovium using immunohistochemistry/fluorescence and digital spatial profiling and show that Axl is preferentially expressed in the lining layer. Moreover, its ectodomain, released in the synovial fluid, is associated with synovial histopathology. We also show that Toll-like-receptor 4-stimulated synovial fibroblasts from patients with RA modulate MerTK shedding by macrophages. Lastly, Axl/MerTK synovial expression is influenced by disease stage and therapeutic intervention, notably by IL-6 inhibition. These findings suggest that Axl/MerTK are a dynamic axis modulated by synovial cellular features, disease stage and treatment

    Serum and Tissue Biomarkers Associated With Composite of Relevant Endpoints for Sj\uf6gren Syndrome (CRESS) and Sj\uf6gren Tool for Assessing Response (STAR) to B Cell–Targeted Therapy in the Trial of Anti–B Cell Therapy in Patients With Primary Sj\uf6gren Syndrome (TRACTISS)

    Get PDF
    \ua9 2023 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.Objective: This study aimed to identify peripheral and salivary gland (SG) biomarkers of response/resistance to B cell depletion based on the novel concise Composite of Relevant Endpoints for Sj\uf6gren Syndrome (cCRESS) and candidate Sj\uf6gren Tool for Assessing Response (STAR) composite endpoints. Methods: Longitudinal analysis of peripheral blood and SG biopsies was performed pre- and post-treatment from the Trial of Anti–B Cell Therapy in Patients With Primary Sj\uf6gren Syndrome (TRACTISS) combining flow cytometry immunophenotyping, serum cytokines, and SG bulk RNA sequencing. Results: Rituximab treatment prevented the worsening of SG inflammation observed in the placebo arm, by inhibiting the accumulation of class-switched memory B cells within the SG. Furthermore, rituximab significantly down-regulated genes involved in immune-cell recruitment, lymphoid organization alongside antigen presentation, and T cell co-stimulatory pathways. In the peripheral compartment, rituximab down-regulated immunoglobulins and auto-antibodies together with pro-inflammatory cytokines and chemokines. Interestingly, patients classified as responders according to STAR displayed significantly higher baseline levels of C-X-C motif chemokine ligand-13 (CXCL13), interleukin (IL)-22, IL-17A, IL-17F, and tumor necrosis factor-α (TNF-α), whereas a longitudinal analysis of serum T cell–related cytokines showed a selective reduction in both STAR and cCRESS responder patients. Conversely, cCRESS response was better associated with biomarkers of SG immunopathology, with cCRESS-responders showing a significant decrease in SG B cell infiltration and reduced expression of transcriptional gene modules related to T cell costimulation, complement activation, and Fcγ-receptor engagement. Finally, cCRESS and STAR response were associated with a significant improvement in SG exocrine function linked to transcriptional evidence of SG epithelial and metabolic restoration. Conclusion: Rituximab modulates both peripheral and SG inflammation, preventing the deterioration of exocrine function with functional and metabolic restoration of the glandular epithelium. Response assessed by newly developed cCRESS and STAR criteria was associated with differential modulation of peripheral and SG biomarkers, emerging as novel tools for patient stratification. (Figure presented.)

    Highly symmetric POVMs and their informational power

    Get PDF
    We discuss the dependence of the Shannon entropy of normalized finite rank-1 POVMs on the choice of the input state, looking for the states that minimize this quantity. To distinguish the class of measurements where the problem can be solved analytically, we introduce the notion of highly symmetric POVMs and classify them in dimension two (for qubits). In this case we prove that the entropy is minimal, and hence the relative entropy (informational power) is maximal, if and only if the input state is orthogonal to one of the states constituting a POVM. The method used in the proof, employing the Michel theory of critical points for group action, the Hermite interpolation and the structure of invariant polynomials for unitary-antiunitary groups, can also be applied in higher dimensions and for other entropy-like functions. The links between entropy minimization and entropic uncertainty relations, the Wehrl entropy and the quantum dynamical entropy are described.Comment: 40 pages, 3 figure

    Interleukin-36 family dysregulation drives joint inflammation and therapy response in psoriatic arthritis.

    No full text
    This is a pre-copyedited, author-produced version of an article accepted for publication in Rheumatology, following peer review. The version of record:Marie-Astrid Boutet, Alessandra Nerviani, Gloria Lliso-Ribera, Davide Lucchesi, Edoardo Prediletto, Giulia Maria Ghirardi, Katriona Goldmann, Myles Lewis, Costantino Pitzalis, Interleukin-36 family dysregulation drives joint inflammation and therapy response in psoriatic arthritis, Rheumatology, kez358, https://doi.org/10.1093/rheumatology/kez358 is available online at: https://doi.org/10.1093/rheumatology/kez358.OBJECTIVES: IL-36 agonists are pro-inflammatory cytokines involved in the pathogenesis of psoriasis. However, their role in the pathogenesis of arthritis and treatment response to DMARDs in PsA remains uncertain. Therefore, we investigated the IL-36 axis in the synovium of early, treatment-naïve PsA, and for comparison RA patients, pre- and post-DMARDs therapy. METHODS: Synovial tissues were collected by US-guided biopsy from patients with early, treatment-naïve PsA and RA at baseline and 6 months after DMARDs therapy. IL-36 family members were investigated in synovium by RNA sequencing and immunohistochemistry, and expression levels correlated with DMARDs treatment response ex vivo. Additionally, DMARDs effects on IL-36 were investigated in vitro in fibroblast-like synoviocytes. RESULTS: PsA synovium displayed a reduced expression of IL-36 antagonists, while IL-36 agonists were comparable between PsA and RA. Additionally, neutrophil-related molecules, which drive a higher activation of the IL-36 pathway, were upregulated in PsA compared with RA. At baseline, the synovial expression of IL-36α was significantly higher in PsA non-responders to DMARDs treatment, with the differential expression being sustained at 6 months post-treatment. In vitro, primary PsA-derived fibroblasts were more responsive to IL-36 stimulation compared with RA and, importantly, DMARDs treatment increased IL-36 expression in PsA fibroblasts. CONCLUSION: The impaired balance between IL-36 agonists-antagonists described herein for the first time in PsA synovium and the decreased sensitivity to DMARDs in vitro may explain the apparent lower efficacy of DMARDs in PsA compared with RA. Exogenous replacement of IL-36 antagonists may be a novel promising therapeutic target for PsA patients
    corecore