237 research outputs found

    On the Lower Bound to the Input and Output Mismatch of Conditionally Stable Linear Two-Ports

    Get PDF
    In the design of amplifier stages based on unconditionally stable linear active two-ports, the amplifier gain can be maximized through simultaneous conjugate matching with passive loads at the input and output ports. Conversely, the optimization of linear amplifiers based on conditionally stable active devices requires a trade-off between gain, stability margin, input/output port mismatch and (for low-noise amplifiers) noise figure. Exploiting potentially in-band unstable devices can be advantageous in the design of open-loop low-noise amplifiers, since the in-band stabilization with input resistors is well known to negatively affect the amplifier minimum noise figure. Within this framework, the article derives a lower bound to the input and output mismatch of non unconditionally stable linear two-ports. The minumum mismatch is shown to only depend, in a simple way, on the stability factor K and on the assumed mismatch ratio between the two ports. The minimum mismatch condition can be implemented by cascading the active, potentially in-band unstable two-port with two (input and output) reactive matching sections. The application of the theory to the design of low-noise amplifier open-loop stages based on conditionally stable active devices is discussed through CAD examples

    Physics-based large-signal sensitivity analysis of microwave circuits using technological parametric sensitivity from multidimensional semiconductor device models

    Get PDF
    The authors present an efficient approach to evaluate the large-signal (LS) parametric sensitivity of active semiconductor devices under quasi-periodic operation through accurate, multidimensional physics-based models. The proposed technique exploits efficient intermediate mathematical models to perform the link between physics-based analysis and circuit-oriented simulations, and only requires the evaluation of dc and ac small-signal (dc charge) sensitivities under general quasi-static conditions. To illustrate the technique, the authors discuss examples of sensitivity evaluation, statistical analysis, and doping profile optimization of an implanted MESFET to minimize intermodulation which makes use of LS parametric sensitivities under two-tone excitatio

    Natura di Anima e Numero nella letteratura aritmologica italiana del secondo Rinascimento (1500-1630)

    Get PDF
    The dissertation aims to survey the ontological and cognitive relationships between soul and number in the framework of late Renaissance thought, during XVI and XVII Centuries, the crucial age of development and progressive affirmation of modern science. Mainly receiving the doctrines of Neoplatonic philosophers, especially Porphyry, Iamblichus and Proclus, during the Renaissance emerges a current of thought that combines metaphysical investigation on the soul and theories about numerical, geometrical and harmonic proportions. After a general introduction and a presentation of the status quaestionis, the study explores the main works dealing with the theme, from Cristoforo Marcello\u2019s De anima traditionis Opus (1508) to the De Harmonia mundi of Francesco Zorzi (1525) and the Hebdomades of Fabio Paolini (1589), focusing particularly on numerical symbolism. Finally, the last chapter examines the faculties of the soul in treatises and collections concerning mathematical correspondences and analogies

    When self-consistency makes a difference

    Get PDF
    Compound semiconductor power RF and microwave device modeling requires, in many cases, the use of selfconsistent electrothermal equivalent circuits. The slow thermal dynamics and the thermal nonlinearity should be accurately included in the model; otherwise, some response features subtly related to the detailed frequency behavior of the slow thermal dynamics would be inaccurately reproduced or completely distorted. In this contribution we show two examples, concerning current collapse in HBTs and modeling of IMPs in GaN HEMTs. Accurate thermal modeling is proved to be be made compatible with circuit-oriented CAD tools through a proper choice of system-level approximations; in the discussion we exploit a Wiener approach, but of course the strategy should be tailored to the specific problem under consideratio

    Behavioral modeling of GaN-based power amplifiers: impact of electrothermal feedback on the model accuracy and identification

    No full text
    In this article, we discuss the accuracy of behavioral models in simulating the intermodulation distortion (IMD) of microwave GaN-based high-power amplifiers in the presence of strong electrothermal (ET) feedback. Exploiting an accurate self-consistent ET model derived from measurements and thermal finite-element method simulations, we show that behavioral models are able to yield accurate results, provided that the model identification is carried out with signals with wide bandwidth and large dynamics

    GaN Monolithic Power Amplifiers for Microwave Backhaul Applications

    Get PDF
    Gallium nitride integrated technology is very promising not only for wireless applications at mobile frequencies (below 6 GHz) but also for network backhaul radiolink deployment, now under deep revision for the incoming 5G generation of mobile communications. This contribution presents three linear power amplifiers realized on 0.25 μ m Gallium Nitride on Silicon Carbide monolithic integrated circuits for microwave backhaul applications: two combined power amplifiers working in the backhaul band around 7 GHz, and a more challenging third one working in the higher 15 GHz band. Architectures and main design steps are described, highlighting the pros and cons of Gallium Nitride with respect to the reference technology which, for these applications, is represented by gallium arsenide
    corecore