751 research outputs found

    Modifying and validating the Composite International Diagnostic Interview (CIDI) for use in Nepal

    Full text link
    Background : Efforts to develop and validate fully‐structured diagnostic interviews of mental disorders in non‐Western countries have been largely unsuccessful. However, the principled methods of translation, harmonization, and calibration that have been developed by cross‐national survey methodologists have never before been used to guide such development efforts. The current report presents the results of a rigorous program of research using these methods designed to modify and validate the Composite International Diagnostic Interview (CIDI) for an epidemiological survey in Nepal. Methods : A five‐step process of translation, harmonization, and calibration was used to modify the instrument. A blinded clinical reappraisal design was used to validate the instrument. Results : Preliminary interviews with local mental health expert led to a focus on major depressive episode, mania/hypomania, panic disorder, post‐traumatic stress disorder, generalized anxiety disorder, and intermittent explosive disorder. After an iterative process of multiple translations‐revisions guided by the principles developed by cross‐national survey methodologists, lifetime DSM‐IV diagnoses based on the final Nepali CIDI had excellent concordance with diagnoses based on blinded Structured Clinical Interview for DSM‐IV (SCID) clinical reappraisal interviews. Conclusions : Valid assessment of mental disorders can be achieved with fully‐structured diagnostic interviews even in low‐income non‐Western settings with rigorous implementation of replicable developmental strategies. Copyright © 2013 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97206/1/mpr1375.pd

    Clinicohistopathological Correlation in Leprosy

    Full text link

    Complex itinerant ferromagnetism in noncentrosymmetric Cr11Ge19

    Full text link
    The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by electrical transport, AC and DC magnetization, heat capacity, x-ray diffraction, resonant ultrasound spectroscopy, and first principles electronic structure calculations. Complex itinerant ferromagnetism in this material is indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC susceptibility, and a weak heat capacity anomaly near the Curie temperature (88 K). The inclusion of spin wave excitations was found to be important in modeling the low temperature heat capacity. The temperature dependence of the elastic moduli and lattice constants, including negative thermal expansion along the c axis at low temperatures, indicate strong magneto-elastic coupling in this system. Calculations show strong evidence for itinerant ferromagnetism and suggest a noncollinear ground state may be expected

    Electron irradiation effects on superconductivity in PdTe2_2: an application of a generalized Anderson theorem

    Full text link
    Low temperature (\sim 20~K) electron irradiation with 2.5 MeV relativistic electrons was used to study the effect of controlled non-magnetic disorder on the normal and superconducting properties of the type-II Dirac semimetal PdTe2_2. We report measurements of longitudinal and Hall resistivity, thermal conductivity and London penetration depth using tunnel-diode resonator technique for various irradiation doses. The normal state electrical resistivity follows Matthiessen rule with an increase of the residual resistivity at a rate of \sim0.77μΩ \mu \Omegacm/(C/cm2)(\textrm{C}/\textrm{cm}^2). London penetration depth and thermal conductivity results show that the superconducting state remains fully gapped. The superconducting transition temperature is suppressed at a non-zero rate that is about sixteen times slower than described by the Abrikosov-Gor'kov dependence, applicable to magnetic impurity scattering in isotropic, single-band ss-wave superconductors. To gain information about the gap structure and symmetry of the pairing state, we perform a detailed analysis of these experimental results based on insight from a generalized Anderson theorem for multi-band superconductors. This imposes quantitative constraints on the gap anisotropies for each of the possible pairing candidate states. We conclude that the most likely pairing candidate is an unconventional A1g+A_{1g}^{+-} state. While we cannot exclude the conventional A1g++A_{1g}^{++} and the triplet A1uA_{1u}, we demonstrate that these states require additional assumptions about the orbital structure of the disorder potential to be consistent with our experimental results, e.g., a ratio of inter- to intra-band scattering for the singlet state significantly larger than one. Due to the generality of our theoretical framework, we think that it will also be useful for irradiation studies in other spin-orbit-coupled multi-orbital systems.Comment: 22 pages, 12 figure

    Rebuilding soil hydrological functioning after swidden agriculture in eastern Madagascar

    Get PDF
    Land-use change due to the widespread practice of swidden agriculture affects the supply of ecosystem services. However, there is comparatively little understanding of how the hydrological functioning of soils, which affects rainfall infiltration and therefore flood risk, dry-season flows and surface erosion, is affected by repeated vegetation clearing and burning, the extent to which this can recover following land abandonment and vegetation regrowth, and whether active restoration speeds up recovery. We used interviews with local land users and indicator plant species to reconstruct the land-use history of 19 different sites in upland eastern Madagascar that represent four different land-use categories: semi-mature forests that were never burnt but were influenced by manual logging until 15–20 years ago; fallows that were actively reforested 6–9 years ago; 2–10 year old naturally regenerating fallows; and highly degraded fire-climax grassland sites. Surface- and near-surface (down to 30 cm depth) saturated soil hydraulic conductivities (Ksat), as well as the dominant flow pathways for infiltration and percolation were determined for each land-cover type. Surface Ksat in the forest sites was very high (median: 724 mm h−1) and infiltration was dominated by flow along roots and other preferential flow pathways (macropores), whereas Ksat in the degraded land was low (median: 45 mm h−1) with infiltration being dominated by near-surface matrix flow. The total area of blue-dye stains was inversely correlated to the Ksat. Both surface- and near-surface Ksat had increased significantly after 6–9 years of forest regeneration (median values of 203 and 161 mm h−1 for reforestation and natural regeneration, respectively). Additional observations are needed to more fully understand the rates at which soil hydrological functioning can be rebuilt and whether active replanting decreases the time required to restore soil hydrological functioning or not
    corecore