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Abstract 23 

Land-use change due to the widespread practice of swidden agriculture affects the supply 24 

of ecosystem services. However, there is comparatively little understanding of how the 25 

hydrological functioning of soils, which affects rainfall infiltration and therefore flood 26 

risk, dry-season flows and surface erosion, is affected by repeated vegetation clearing and 27 

burning, the extent to which this can recover following land abandonment and vegetation 28 

regrowth, and whether active restoration speeds up recovery. We used interviews with 29 

local land users and indicator plant species to reconstruct the land-use history of 19 30 

different sites in upland eastern Madagascar that represent four different land-use 31 

categories: semi-mature forests that were never burnt but were influenced by manual 32 

logging until 15–20 years ago; fallows that were actively reforested 6–9 years ago; 2–10 33 

year old naturally regenerating fallows; and highly degraded fire-climax grassland sites. 34 

Surface- and near-surface (down to 30 cm depth) saturated soil hydraulic conductivities 35 

(Ksat), as well as the dominant flow pathways for infiltration and percolation were 36 

determined for each land-cover type. Surface Ksat in the forest sites was very high 37 

(median: 724 mm h-1) and infiltration was dominated by flow along roots and other 38 

preferential flow pathways (macropores), whereas Ksat in the degraded land was low 39 

(median: 45 mm h-1) with infiltration being dominated by near-surface matrix flow. The 40 

total area of blue-dye stains was inversely correlated to the Ksat. Both surface- and near-41 

surface Ksat had increased significantly after 6–9 years of forest regeneration (median 42 

values of 203 and 161 mm h-1 for reforestation and natural regeneration, respectively). 43 

Additional observations are needed to more fully understand the rates at which soil 44 

hydrological functioning can be rebuilt and whether active replanting decreases the time 45 

required to restore soil hydrological functioning or not.  46 
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Keywords: forest regeneration, reforestation, preferential flow pathways, saturated 47 

hydraulic conductivity, runoff generation, swidden agriculture. 48 

 49 

Introduction 50 

Large areas of the agricultural-forest frontier in tropical countries are dominated by 51 

swidden cultivation (also known as shifting cultivation or slash-and-burn agriculture; 52 

Brady, 1996; Van Vliet et al., 2012). Swidden agriculture typically results in a mosaic of 53 

land uses, including naturally regenerating fallows. Where population pressure is high and 54 

rotation cycles have shortened, it also results in extensive patches of highly degraded land 55 

that are no longer included in the agricultural rotation (Kleinman et al., 1995; Malmer et 56 

al., 2005, Bai et al., 2008). The ecological and soil fertility values of land in the various 57 

phases of the swidden agricultural cycle, and the extent to which they improve during 58 

forest regrowth, have received significant attention (Szott et al., 1999; Chazdon, 2014; 59 

Mukul and Herbohn, 2016). However, despite the importance of water for rural 60 

communities and ecosystems, our understanding of how the hydrological functioning of 61 

tropical soils is impacted by repeated forest clearance and burning followed by vegetation 62 

regrowth is still rather limited (e.g. Toky and Ramakrishnan, 1981; Gafur et al., 2003; 63 

Ziegler et al., 2004). Also, evidence concerning the degree to which soil hydrological 64 

functions may be restored by assisted regeneration (cf. Dugan, 2000) as opposed to full-65 

blown reforestation seems largely absent (Scott et al., 2005; Ilstedt et al., 2007).  66 

The fire used in swidden agriculture can decrease soil organic carbon content, reduce 67 

rooting density and depth, and decrease soil biotic activity (Fragoso et al., 1997; Lavelle et 68 

al., 2001). Such changes can lead, in turn, to decreases in soil infiltration capacity and thus 69 

increased surface runoff (Toky and Ramakrishnan, 1981; Ziegler et al., 2004). Excess 70 
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surface runoff generation in the case of advanced soil degradation may even impair soil- 71 

and groundwater recharge, which can have negative impacts on dry-season streamflow 72 

and community water resources (Bruijnzeel, 2004; Forsyth and Walker, 2008). 73 

In response to such problems, and to promote carbon sequestration, biodiversity, and rural 74 

livelihoods, several major international initiatives (e.g. the Global Partnership on Forest 75 

Landscape Restoration/IUCN, 2011; UN, 2015; cf. Aronson and Alexander, 2013; Lamb, 76 

2014) have committed to restoring large areas of the world’s degraded and deforested 77 

land. However, the exact hydrological implications of such efforts, especially with respect 78 

to changes in the streamflow regime, are under debate (Jackson et al., 2005; Scott et al., 79 

2005; Malmer et al., 2009). There are indications that the water use of vigorously 80 

regenerating vegetation can exceed that of old-growth forest (Giambelluca et al., 2000; cf. 81 

Ford et al., 2011) causing a reduction in streamflow during at least part of the succession 82 

(Swank et al., 2001; Lacombe et al., 2015). On the other hand, total streamflow and 83 

streamflow responses to rainfall are also influenced by soil hydrological functioning 84 

(Bonell, 2005), which  has been shown to  improve during natural forest regeneration 85 

(Ziegler et al., 2004; Zimmermann et al., 2010; Hassler et al., 2011) and after tree planting 86 

on degraded soils (Bonell et al., 2010; Benegas et al., 2014). This improvement is thought 87 

to reflect increases in soil organic matter, rooting density and depth, and, especially, soil 88 

faunal activity and the development of preferential flow pathways (macropores) during 89 

vegetation maturation (Colloff et al., 2010). As such, the quantification of rainfall 90 

infiltration and related soil hydrological characteristics, and changes therein during forest 91 

regeneration are important for understanding the hydrological effects of tropical land-use 92 

change. 93 



5 

A large proportion of Madagascar’s renowned rain forest biome is now covered by a 94 

mosaic of land uses representing different stages of the swidden agricultural cycle, 95 

including highly degraded grasslands (Styger et al., 2007; Harper et al., 2007). Both 96 

governmental and conservation organisations have attempted to slow or stop the practice 97 

of swidden agriculture (Scales, 2014) and there have been occasional attempts at active 98 

reforestation (Portela et al., 2012; Busch et al., 2012). Recently, the Malagasy Government 99 

made a commitment to the United Nations Framework Convention of Climate Change to 100 

reforest 270,000 ha with native species, and greatly reduce the national rate of 101 

deforestation (Government of Madagascar, 2015). There have been claims that forest 102 

restoration is important in terms of hydrological regulation (Portela et al., 2012) but 103 

empirical studies of the effects of deforestation, forest regeneration or reforestation on soil 104 

hydrological functioning in Madagascar are scarce and concern observations made more 105 

than half a century ago (Bailly et al., 1974). 106 

This study is part of a larger effort investigating the net hydrological impacts and 107 

ecosystem services of various land-cover types associated with swidden agriculture and 108 

forest regeneration in upland eastern Madagascar. The study region has experienced a long 109 

history of swidden cultivation, as well as various conservation interventions aimed at 110 

reducing forest clearance and burning, and, since 2005, active reforestation (Portela et al., 111 

2012). Interviews with local people, and plant indicator species were used to identify 112 

19 sites, which represented four widely occurring land-cover types (semi-mature forest, 113 

actively reforested fallows, young naturally regenerating fallows, and degraded grass- and 114 

shrub land). At these sites we investigated: (i) the differences in top-soil infiltration rates 115 

and associated soil physical properties, and (ii) differences in preferential flow pathways 116 

in order to determine how soil hydrological functioning is affected by land cover and 117 
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whether active reforestation using native tree species results in a faster recovery of soil 118 

hydrological functioning after land abandonment than natural forest regrowth.  119 

Materials and Methods 120 

Research area 121 

The research was carried out in two communities (Andasibe and Ambatovola) in the 122 

southern part of the Ankeniheny Zahamena Corridor (CAZ), which is a newly established 123 

protected area and REDD+ pilot project area. The CAZ is widely recognised for its 124 

extraordinary biodiversity (Le Saout et al., 2013). Swidden agriculture, in a system locally 125 

known as tavy, has been practiced in the region for many generations and is considered a 126 

major driver of deforestation (Styger et al., 2007; Clausen et al., 2013). The cutting and 127 

burning of forest (primary or secondary) is typically followed by one or two seasons of 128 

rice cultivation and a root crop the next season. The land is then left for natural fallow 129 

regrowth, until the recovering vegetation is cleared again (Styger et al., 2007). Due to 130 

rapid population growth, the length of the fallow cycle has decreased from 8–15 years in 131 

the 1970’s to as little as 3–5 years, resulting in degraded areas dominated by shrubs, ferns 132 

and grasses (Styger et al., 2007). Some of the degraded fallows in the research area were 133 

actively replanted with native tree species as part of the TAMS (Tetik Asa Mampody 134 

Savoka) reforestation project, which started in 2005 and planted more than 120 native 135 

species in more than 300 ha of degraded agricultural and forest land (Conservation 136 

International, 2011). The reforested sites did not receive regular follow-up maintenance 137 

(e.g. weeding of invasive species), and in most sites the trees are still relatively small 138 

(<5 m height) and do not yet provide closed canopy conditions.  139 

The study area is characterized by steep slopes (>20°) and broad valleys; elevations range 140 

between 300 and 1800 m a.s.l. The area is underlain by Precambrian metamorphic and 141 
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igneous basement rocks (granites, migmatites and schists) in which Oxisols and Ultisols 142 

have developed (Hervieu and Randrianaridera, 1956; Du Puy and Moat, 1996). Based on 143 

soil textural data down to 100 cm depth from the study area (Andriamananjara et al., 144 

2016), the soils in our study sites are classified as Tropudults and typically show an  145 

increase in clay content at a depth of 60–70 cm. The climate is tropical monsoonal 146 

(Köeppen-type Am) with an average temperature at an elevation of 950 m a.s.l. (site 147 

number 8) of 15°C during the dry season (April to October) and 22°C during the wet 148 

season (November to March). Mean annual rainfall at Andasibe (990 m a.s.l.) was 149 

1625 mm yr-1 for the 1983–2013 period (Météo Madagascar, unpublished data, 2013). 150 

Total rainfall measured with a tipping-bucket rain gauge (Rain Collector II, Davis 151 

Instruments, Hayward, USA; 0.2 mm per tip) near Andasibe at site number 8 (Figure 1) 152 

between October 2014 and September 2015 was 1650 mm. The median, 95th percentile 153 

and maximum 5-min rainfall intensities during this period were 3.0, 20 and 150 mm h-1, 154 

respectively, with corresponding values of 1.0, 8.6, and 95 mm h-1 for the 15-min rainfall 155 

intensities. Almost a third of the annual rainfall (531 mm) fell at a 5-min intensity > 20 156 

mm h-1, while 41% (677 mm) occurred at a 15-min intensity > 8.6 mm h-1. 157 

 158 

<<Figure 1>> 159 

 160 

Site selection  161 

We wanted to sample sites that represented the four focal land-cover categories: (i) semi-162 

mature forests that experienced heavy manual in the past but were never totally cleared 163 

and burned. These forests contain mostly small trees with a few larger trees (diameter at 164 

breast height ≥20 cm). It is likely that the latter represent remnant individuals that were 165 
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considered too small to be harvested at the time of the latest harvesting (F); (ii) reforested 166 

shrub/tree fallows (RF), where endemic trees were actively replanted between 2005 and 167 

2013 as part of the TAMS project; (iii) natural fallows (NF) dominated by shrubs and/or 168 

trees of natural succession on abandoned agricultural land; and (iv) highly degraded 169 

abandoned agricultural fields (DL) covered by scattered shrubs and grasses (fire-climax). 170 

Undisturbed mature forests that have not been influenced by illegal logging, and older 171 

fallows (>15 years) do not exist in the study area. We used a combination of previous 172 

work that describes the plant species composition associated with different land-cover 173 

stages (see Table 1), shape files showing reforested areas, and interviews with local 174 

leaders and land users to identify the areas that represented our four focal land-cover 175 

types. Within each land-cover category, we selected sites that were at least 120 m long and 176 

75 m wide, without any major visual changes in vegetation or slope to minimise edge 177 

effects. A total of 19 sites were selected (Figure 1 and Supplementary Material 1). At each 178 

site measurements were taken at five locations at 15 m intervals along a 60 m transect. 179 

The transects were located along the hillslope gradient to avoid bias by only including 180 

upslope or downslope measurements (cf. Sobieraj et al., 2004; Ghimire et al., 2013).  181 

 182 

<<Table 1>> 183 

 184 

Field measurements  185 

Soil physical characteristics 186 

Soil cores (100 cm³) were taken at two depths (12.5–17.5 cm and 22.5–27.5 cm) at each 187 

measurement point along a transect to determine porosity, moisture content at field 188 
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capacity and bulk density. The moisture content at field capacity was defined as the 189 

volumetric moisture content after three days of gravity drainage rather than following the 190 

strict definition of the moisture content at a suction of 333 hPa (Koorevaar et al., 1983). 191 

The samples were saturated for 5 days, weighted, left to drain for 3 days and weighted 192 

again at the Andasibe field station. The samples were oven dried (24 h at 105 oC) at the 193 

Laboratoire des Radio Isotopes (University of Antananarivo) and weighted again. Porosity 194 

was determined following Klute (1986) by comparing the saturated weight and oven-dried 195 

weight of the samples. Samples for soil textural analysis were taken at the same depths as 196 

the cores and combined into one bulk sample per depth per transect. Particle size 197 

distributions were analysed at the VU University in Amsterdam using a QUIXEL Helium-198 

Neon Laser Optical System (Sympatec GmbH, Clausthal-Zellerfeld, Germany). To ensure 199 

that there were no significant changes in soil texture along a transect, soil texture was 200 

determined at each measurement location in the field following Rowell (1994). 201 

Saturated hydraulic conductivity 202 

The saturated soil hydraulic conductivity (Ksat) describes the rate of steady-state 203 

infiltration (at the surface) or percolation (at depth). Ksat was measured at the soil surface, 204 

at 10–20 cm and at 20–30 cm depths. These measurement depths correspond with the 205 

main soil horizons in the study area and allow comparison of the results with other studies 206 

(e.g. Godsey and Elsenbeer, 2002; Zimmermann et al., 2006, 2010). Steady-state surface 207 

infiltration rates were determined using a portable double-ring infiltrometer (15 cm inner 208 

diameter, 21 cm outer diameter) that was inserted 9±3 cm into the soil, maintaining a 209 

constant head of 10±3 cm). These surface measurements were considered to represent the 210 

0–10 cm layer. Values of sub-soil Ksat were measured using a constant-head field 211 
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permeameter (Amoozegar, 1989). The diameter of the auger hole was 6.0±0.5 cm at 10–212 

20 cm depth and 5.6±0.5 cm at 20–30 cm. The applied constant head was 17.5±1.5 cm.  213 

Dye tracer experiments 214 

Dye tracer experiments were carried out to characterise the soils of the investigated land-215 

cover types in terms of their dominant infiltration and percolation patterns, i.e. matrix flow 216 

(through soil pores) vs. preferential pathways (along roots and through macropores) 217 

(Beven and Germann, 1982). Water with 2 g L-l Brilliant Blue Dye (FCF C.I. 42090) was 218 

sprayed on a 1 m² plot at an average intensity of 20 mm h-l in the middle of the transect at 219 

six study sites (forest, n=2; reforestation, n=1; natural fallow, n=1; and degraded land, 220 

n=2). Each plot was divided into two parts: the upper half received 20 mm of dye, the 221 

lower half received 40 mm. The irrigated plots were covered with a plastic sheet and the 222 

soil was excavated the next day. Six sections were excavated per plot (three per 223 

application rate), described qualitatively in the field and photographed for subsequent 224 

analysis (cf. Weiler and Fluhler, 2004), to determine: (i) the so-called volume density (i.e., 225 

the fraction of soil that contained blue dye, representing the fraction of the soil where 226 

water infiltrated), (ii) the fraction of blue stains narrower than 2 cm (indicating the 227 

dominance of preferential flow pathways with little interaction with the matrix), and (iii) 228 

the fraction of stains that were wider than 20 cm (indicating the dominance of preferential 229 

flow pathways with high interaction with the matrix or homogeneous matrix flow). 230 

Data analysis 231 

Differences in bulk density, porosity, soil moisture content at field capacity, sand, silt, and 232 

clay contents, as well as differences in Ksat between the respective land-cover types were 233 

tested for statistical significance by applying the Kruskal-Wallis analysis of ranks with 234 

Dunn’s method (Kruskal-Wallis, 1952). Differences were taken to be significant for 235 
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values of p < 0.05. Spearman rank correlation (rs) analysis was used to determine the 236 

correlation between Ksat and the other soil physical characteristics. 237 

Median surface and subsurface Ksat-values for the different land-cover types were 238 

compared to the 95th percentiles of the 5-min and 15-min rainfall intensities as measured 239 

at Andasibe to infer the dominant runoff pathways (i.e. infiltration-excess overland flow 240 

occurrence, vertical percolation, lateral subsurface flow or saturated overland flow; cf. 241 

Bonell et al., 2010; Ghimire et al., 2014). 242 

Results 243 

Soil physical characteristics 244 

Soil texture was either clay, clay loam, or sandy clay loam. Overall clay content at the 245 

various study sites varied between 23 and 66%, silt between 12 and 34%, and sand 246 

between 8 and 65%. Although clay contents were highest (and sand contents lowest) for 247 

the degraded land sites, the differences in sand, silt or clay contents between the land-248 

cover types were not significant (Table 2). Sand, silt and clay contents did not differ 249 

significantly between the two depths intervals (12.5–17.5 cm and 22.5–27.5 cm) either. 250 

Bulk density at 12.5–17.5 cm depth was significantly lower for the forest sites than for any 251 

of the other land-cover types, but the differences at a depth of 22.5–27.5 cm between the 252 

land cover types were small and not significant (Supplementary Materials 2 and 3a). 253 

Likewise, differences in porosity (for either depth interval) between the different land 254 

cover types were small and not significant. Although the differences in moisture content at 255 

field capacity between land cover types were larger than those for porosity, they were also 256 

not significant (Supplementary Materials 2, 3b and 4a). Drainable porosity (i.e., total 257 

porosity minus moisture content at field capacity) at 12.5–17.5 cm did not differ 258 

significantly between the different land cover types but at 22.5–27.5 cm the median value 259 
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for the forest sites was significantly smaller than that for the degraded land sites 260 

(Supplementary Materials 2 and 4b). The results for drainable porosity as a fraction of 261 

total porosity were similar. 262 

Saturated hydraulic conductivity 263 

Values of saturated hydraulic conductivity (Ksat) were generally higher for the forest sites 264 

than for any other land cover (for all three measurement depths). However, the scatter in 265 

the individual measurements was such that only the difference between the median Ksat of 266 

the relatively undisturbed forest soils (724 mm h-1) and that of the degraded land 267 

(45 mm h-1) was statistically significant (Figure 2a and Table 2). At a depth of 10–20 cm, 268 

the median Ksat for the forest sites (87 mm h-1) and reforestation sites (56 mm h-1) were 269 

significantly higher than those for the natural fallows (14 mm h-1) and the heavily 270 

degraded sites (20 mm h-1) (Figure 2b and Table 2). At 20–30 cm depth, only the median 271 

Ksat of the forest (4.3 mm h-1) and that for the soil at the degraded land sites (0.8 mm h-1) 272 

differed significantly from each other (Figure 2c and Table 2). 273 

 274 

<<Table 2>> 275 

 276 

Ksat decreased quickly with depth at all sites (Figure 2 and Table 2). While the median 277 

surface Ksat exceeded the 95th percentiles of the 5- and 15-min rainfall intensities for all 278 

four land cover types (Figure 2a), Ksat-values at 20–30 cm depth were well below these 279 

intensities, regardless of land-cover type (Figure 2c). Median Ksat at 10–20 cm depth 280 

beneath the forest sites and reforestation sites (87 and 56 mm h-1, respectively) was much 281 

larger than the 95th percentile of 5-min rainfall intensity (20 mm h-1), while the median Ksat 282 
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for the young natural fallow sites (14 mm h-1) and degraded land (20 mm h-1) was similar 283 

to the 95th percentile of the 5-min rainfall intensity.  284 

Median Ksat per transect at 10–20 and at 20–30 cm was not significantly correlated with 285 

the sand or clay contents. Ksat at 10–20 and at 20–30 cm was not significantly correlated 286 

with the bulk density or porosity either (not known for 0–10 cm). The Ksat at 10–20 cm 287 

depth was significantly correlated with moisture content at field capacity (rs = 0.23), 288 

drainable porosity (rs = -0.40), and the ratio of moisture content at field capacity and 289 

porosity (rs = 0.40) at 12.5–17.5 cm depth. There was also a weak but statistically 290 

significant correlation between Ksat at 20–30 cm depth and the drainable porosity at 22.5–291 

27.5 cm (rs = -0.20). Taking the data for the reforestation and natural fallow sites together 292 

(Figure 3), surface Ksat appeared to increase with time since agricultural abandonment, 293 

although the relationship was not particularly strong (rs = 0.42). The correlation improved 294 

(rs = 0.68) when only considering the reforestation sites but was not significant for the 295 

natural fallow sites. Values of Ksat at 10–20 cm or 20–30 cm depth were not correlated 296 

with time since abandonment. 297 

 298 

<<Figure 2>> 299 

 300 

<<Figure 3>> 301 

 302 

Dye infiltration patterns 303 

There were no significant differences in the dye patterns or the maximum depth of dye 304 

infiltration between the 20 and 40 mm applications. Therefore, results for the two 305 
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applications were analysed together for each land-cover type. For the semi-mature forest, 306 

as well as the reforestation/natural fallow sites, the infiltrated dye was located mainly 307 

along larger macropores (Figure 4a and 4b). The forest soils were mostly characterized by 308 

macropore flow with mixed interaction with the soil matrix (Figure 4a). The excavated 309 

soil sections of the degraded land plots showed a more or less homogeneously stained top 310 

layer (0–15 cm) where the fine roots were concentrated. The associated blue dye patterns 311 

were mainly characterized by matrix flow and occasional ‘fingering’ (Figure 4). Where 312 

macropore flow reached greater depth, it mainly occurred through worm holes or along 313 

old roots and was characterised by relatively limited interaction with the soil matrix. 314 

Infiltration patterns in the reforestation and young natural fallow sites varied considerably 315 

between sections and could not be characterized by a single dominant flow type. Because 316 

of this large variability and the small number of blue dye experiments, these sites were 317 

further analysed as one land-cover category (RF/NF). 318 

 319 

<<Figure 4 >> 320 

 321 

The difference in median maximum volume density between the forest sites and RF/NF 322 

plots was significant, with the median value recorded for the forest (0.72) being much 323 

larger than the median for the younger regrowth (0.23; Table 3). The fraction of stains 324 

with a width larger than 20 cm was also greatest for the forest sites (median: 0.22) but  the 325 

difference with the other land cover types was not statistically significant (median of 0.00 326 

for the RF/NF sites vs. 0.10 for the degraded land). The fraction of stains smaller than 327 

2 cm was lower for the forest soil sections (median: 0.37) than for the RF/NF (median: 328 

0.49) and degraded land sections (median: 0.63). Even though these differences were not 329 
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statistically significant, they do suggest a trend towards more and larger macropores and 330 

especially increased interaction with the soil matrix as vegetation regrows and the soil 331 

recovers (Table 3). Further support for the increased importance of preferential flow 332 

pathways in the sites with more mature vegetation comes from the fact that top-soil Ksat 333 

(0–10 cm) was inversely correlated (r2 = 0.72) with the total blue-stained area (median of 334 

the 6 sections) per site; sites dominated by matrix flow had the largest blue dye stained 335 

area in the upper soil layers (Figure 5 and Supplementary Material 5).  336 

 337 

<<Table 3>> 338 

 339 

<<Figure 5>> 340 

 341 

Discussion 342 

Limitations of the space-for-time substitution approach 343 

Although the limitations of using space-for-time substitutions are well recognised (Pickett, 344 

1989), very few studies of changes in saturated soil hydraulic conductivity (Ksat) during 345 

tropical vegetation regrowth on degraded soils have taken measurements in (near-) real 346 

time after abandonment of agricultural land for cropping or grazing, or after tree planting 347 

(e.g. Zimmermann et al., 2010; Patin et al., 2012; Ghimire et al., 2014). Like we did here, 348 

the overwhelming majority of studies employed a space-for-time substitution (vegetation 349 

chrono-sequences) approach for practical reasons (e.g. Gilmour et al., 1987; Deuchars et 350 

al., 1999; Ziegler et al., 2004; Zimmermann et al., 2006; Hassler et al., 2011). An 351 

important challenge in using chrono-sequences when investigating the impact of land-352 



16 

cover change over time is to eliminate the influence of inherent differences in soil 353 

characteristics between sites and to reconstruct the land-use history at a particular location. 354 

The first obstacle can be largely overcome by carefully selecting sites that have the same 355 

soil type (Zimmermann et al. 2006). In this study, all plots were on the same metamorphic 356 

rock type, had a similar soil type and sub-soil textural differences between land-cover 357 

types were not statistically different. Further, Ksat was not strongly correlated with soil 358 

physical characteristics like bulk density or porosity, which suggests that differences in 359 

soil type or texture did not affect Ksat as much as land-cover type and that there was 360 

sufficient initial pedological homogeneity to allow the respective sites to be compared. 361 

Precise land-use history in the study area varies at a very fine scale across the landscape 362 

and finding sites with a truly identical history to group together is difficult or impossible. 363 

However, by using a combination of available secondary data (i.e. shape files from the 364 

TAMS reforestation project; Conservation International, 2011), indicator plant species, 365 

and key informant interviews we were able to identify sites falling into general categories 366 

of past land use. Detailed interviews with local people at each site gave additional 367 

information (such as time since abandonment), which allowed us to explore the impact of 368 

land-use history on Ksat. 369 

Effect of land-cover type on saturated soil hydraulic conductivity  370 

We observed much lower Ksat-values in the natural fallow sites and, especially, the 371 

degraded land sites than in the forest sites (Table 2 and Figure 2). The differences in Ksat 372 

between the degraded sites and the forest sites persisted to 30 cm depth. This suggests that 373 

repeated burning and cropping cycles, combined with shortening recovery periods (Styger 374 

et al., 2007), has a negative impact on soil hydrological properties down to a depth of at 375 

least 30 cm. This finding is similar to that of Ziegler et al. (2004), who found Ksat at 40–376 
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70 cm depth beneath recently abandoned swidden fields and up to ~20 year old 377 

regenerating vegetation in northern Vietnam to be much lower than in the (disturbed) 378 

forest (median values of 15–45, 35–50, and 80–85, mm h-1, respectively). Zimmermann et 379 

al. (2006), working in SW Brazil, found that clearance for swidden agriculture followed 380 

by a single season of cropping and 15 years of regrowth caused a hydrologically 381 

insignificant decrease in soil infiltration capacity (from 1690 to 940 mm h-1, i.e. well 382 

above maximum rainfall intensities), but they found a more pronounced effect when 383 

clearance was followed by two years of cultivation and 20 years of grazed pasture (median 384 

Ksat of 113 mm h-1). These effects were noticeable to at least 20 cm depth, although the 385 

magnitude of change diminished rapidly with depth (Zimmermann et al., 2006). 386 

Our median Ksat-values for the top-soil are similar to those of Bailly et al. (1974), who 387 

worked in our study area during the 1960s and early 1970s (724 mm h-1 vs. 720 mm h-1 for 388 

the forest sites and 161 mm h-1 vs. 115 mm h-1 for the young fallows/‘old bush’ sites). 389 

However, literature values of median infiltrabilities for relatively young regenerating 390 

forests (<10 years) replacing grazed pasture or swidden agriculture elsewhere in the 391 

tropics are generally much lower (32–38 mm h-1; Ziegler et al., 2004; Hassler et al., 2011) 392 

than we recorded for the 6–9 year-old reforestation sites (203 mm h-1, Table 2). 393 

Corresponding published values for slightly older (12–20 years) successional vegetation 394 

range from approximately 65 mm h-1 (Ziegler et al., 2004) through 160 mm h-1 (Hassler et 395 

al., 2011) to 495–945 mm h-1 (Deuchars et al., 1999; Zimmermann et al., 2006). Our 396 

results for the semi-mature forest sites, which contain many trees that are 15-20 years old 397 

fall also in the higher range of these values, although they cannot be direct compared 398 

because they were never burned or cultivated. These differences in the median Ksat-values 399 

for our study sites and the literature values for other tropical areas likely reflect differences 400 

in the intensity of the disturbance regime and initial Ksat upon land abandonment (i.e. level 401 
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of past soil degradation), as well as climatic (notably seasonality and length of dry season) 402 

and inherent edaphic factors (soil fertility) that affect the rate of regrowth and 403 

development of soil biological activity (Deuchars et al., 1999; Hairiah et al., 2006; Colloff 404 

et al., 2010).  405 

Recovery of soil hydrological functioning 406 

We found that surface Ksat increased with time since agricultural abandonment when the 407 

results for the natural fallow and reforestation sites were combined but the trend was not 408 

significant when considering the NF sites only. Median values of Ksat at 20–30 cm depth 409 

did not differ significantly for the natural fallow and reforestation sites either (Table 2). 410 

Therefore, it is not clear from the measurements whether active reforestation decreases the 411 

time needed for hydrological restoration of the soil compared to natural regeneration. This 412 

could be due to the limited number of measurements (n = 30 for NF and n = 20 for RF) or 413 

that any difference is masked by differences in land-use history and the degree of 414 

degradation prior to agricultural abandonment. In addition, the time since planting (6–9 415 

years) or land abandonment (2–10 years) was likely too short to distinguish between the 416 

two regenerative pathways. Unfortunately, older regenerating sites and reforested sites 417 

cannot be found in the area. We, therefore, suggest that our measurements should be 418 

repeated in the future (e.g. five and ten years and even further after the current 419 

measurements) as the effects of active reforestation versus natural regeneration may take 420 

longer to manifest than the age of sites available in this study. 421 

We found no significant differences in Ksat at 10–20 cm or 20–30 cm below the surface 422 

between the natural fallow sites and the degraded grassland sites. Nor did we find a 423 

significant increase in sub-soil Ksat with time since land abandonment (Table 2). This 424 

suggests that the subsurface Ksat requires a (much) longer time to recover than surface Ksat. 425 
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Similar findings have been reported by Ziegler et al. (2004), Zimmermann et al. (2006), 426 

and Hassler et al. (2011).  427 

An increase in top-soil saturated hydraulic conductivity with time following the cessation 428 

of agricultural activity has been reported in several other tropical studies (e.g., Deuchars et 429 

al., 1999; Ziegler et al., 2004) but certainly not by all (e.g. de Moraes et al., 2006; 430 

Zimmermann and Elsenbeer, 2008; Zimmermann et al., 2010). Patin et al. (2012) observed 431 

a nearly eight-fold increase in surface Ksat under fallow vegetation (no age given) during 432 

annual repeated measurements over a period of six years (from 23 to 176 mm h-1) in Laos. 433 

Similarly, large contrasts in the recovery of surface Ksat have been reported after 434 

abandonment of grazing land. Hassler et al. (2011) found an initial improvement in 435 

median infiltrability after eight years of forest regeneration in Panamá (from 23 to 38 436 

mm h-1) followed by a rapid increase to 160 mm h-1 for 12–15 year-old regrowth, 437 

compared to 235 mm h-1 under old-growth forest. On the other hand, Zimmerman et al. 438 

(2010) measured infiltrability and near-surface Ksat for seven consecutive years during 439 

natural succession on an abandoned pasture in SW Brazil and found a slight but non-440 

significant recovery during this period. A similar lack of change in surface Ksat has been 441 

reported by Zimmermann and Elsenbeer (2008) for 10-year-old regrowth in the 442 

Ecuadorian Andes. They attributed this to arrested regeneration because succession was 443 

dominated by bracken that prevented the establishment of pioneer tree species. While 444 

Colloff et al. (2010) showed a steady increase in surface Ksat and macropores with age of 445 

plantations of eucalypts and Acacias, the difference with nearby pastures only became 446 

significant after more than 11 years of growth. 447 

Ilstedt et al. (2007) suggested in their review of the scant tropical literature that a three-448 

fold increase in surface Ksat may be achieved, although they were hesitant to attach a time 449 
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frame given the paucity of good-quality data. Ziegler et al. (2004) considered a natural 450 

succession period of at least 25 years to be necessary to recover most of the surface Ksat 451 

after 2–4 years of swidden cultivation in upland Vietnam. Extrapolation of the initial 452 

changes in infiltrability measured by Hassler et al. (2011) in Panamá suggests that full soil 453 

physical recovery there might be achieved within ca. 20 years. Ghimire et al. (2014), 454 

however, cautioned that reforestation per se does not guarantee an increase in Ksat and the 455 

restoration of the hydrological system if a site is not properly managed (e.g. fire 456 

disturbance or repeated harvesting of litter and branches for animal bedding and 457 

fuelwood). In such cases, surface Ksat-values may actually decrease again with time 458 

(Ghimire et al., 2014; Lacombe et al., 2015).  459 

Effect of land use on preferential flow pathways  460 

The infiltration capacity of clayey and silty soils is primarily affected by their organic 461 

matter content and the abundance and connectivity of preferential flow pathways 462 

(Deuchars et al., 1999; Zhou et al., 2008). The blue dye patterns observed in this study 463 

suggest that preferential flow caused the infiltration rates to be highest for the semi-mature 464 

forest sites and lowest for the degraded land. Generally, the infiltration pattern was more 465 

uniform in the higher-conductivity top layer which is relatively rich in organic matter, 466 

while percolation in the lower-conductivity and more clayey layer at around 7.5–15 cm 467 

depth, occurred mainly along preferential flow pathways (Figure 4). The preferential flow 468 

pathways were most abundant in the forest sites and less abundant in the reforestation, 469 

natural fallows and degraded land sites. There were fewer preferential flow pathways in 470 

the degraded sites, but where they occurred, they allowed water to move deeper than in the 471 

forest sites, in part because of the lower interaction with the matrix. While the dye 472 

experiments were useful to visualize the differences in the infiltration and percolation 473 
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pathways, the number of experiments was too small to determine any statistically 474 

significant differences in the dye patterns between the land cover types. Additional 475 

experiments are thus needed to see if there are differences in the maximum depth of the 476 

dye or the volume density. These measurements could be combined with the device 477 

advanced by Mendoza and Steenhuis (2002) that allows the separate measurement of 478 

vertical and lateral fluxes. 479 

A clear increase in preferential flow pathways (relative to those in adjacent pastures and 480 

young tree plantations) was noted by Colloff et al. (2010) for 11–20-year-old tree 481 

plantations, with most of the macropores attributed to the activity of soil invertebrates like 482 

ants and termites. Hanson et al. (2004) showed for a site in Honduras that high surface 483 

infiltration rates and well-connected preferential flow channels in an aggregated clayey 484 

soil beneath primary forest resulted in rapid vertical infiltration to a depth of 35 cm. 485 

However, in a nearby degraded grassland site that had been subject to repeated slash and 486 

burn activity, infiltration rates were very low and excessive lateral flow occurred at and 487 

just beneath the surface and very little water infiltrated below 10 cm, even though 488 

macropores were present below this depth. These findings were explained in terms of 489 

blocking of near-surface macropores by fine sediment that was washed in from upslope 490 

(Hanson et al., 2004). Benegas et al. (2014) reported that in a mixed land-use setting (tree 491 

clumps within grazed pasture) in Costa Rica, preferential flow was only dominant close to 492 

mature trees, while matrix flow increased with distance from the trees. This effect was 493 

attributed to the combined action of tree root- and soil faunal activity beneath and in the 494 

vicinity of trees (Benegas et al., 2014). Bachmair et al. (2009) studied dye infiltration 495 

patterns in Germany in tilled and untilled farmland, pasture and deciduous forest and 496 

found large differences in maximum infiltration depth for the different land uses. They 497 

also found that larger rainfall applications resulted in deeper infiltration, except under 498 
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forest. We did not find significant differences in the maximum depth of infiltration (or any 499 

other parameter describing the blue dye patterns) for the 20 and 40 mm applications 500 

(Table 3). Instead, the blue dye patterns and Ksat profiles with depth suggest that most of 501 

the infiltrated water stays in the top 30 cm of the soil or results in shallow lateral flow with 502 

very little water percolating through the denser clay layers below.  503 

Implications for runoff generation processes 504 

Whether rainfall infiltrates into a soil or flows along the surface depends largely on the 505 

magnitude of the surface Ksat relative to the prevailing rainfall intensity, and, in addition, 506 

on the change in Ksat with depth (Elsenbeer, 2001; Bonell, 2005). The relatively high 507 

surface Ksat-values exceed most rainfall intensities observed in the study area, suggesting 508 

that infiltration-excess overland flow is a rather rare phenomenon. However, Ksat 509 

decreased sharply with depth for all land-cover types (Figure 2 and Table 2), as was also 510 

reported for many other tropical studies (Godsey and Elsenbeer, 2002; Ziegler et al., 2004; 511 

Zimmermann et al., 2006, 2010; Hassler et al., 2011). Rain water will thus percolate 512 

vertically through the soil profile until meeting the first layer that has a lower Ksat than the 513 

incident precipitation rate, and will then start to accumulate above this layer (Figure 6). 514 

Depending on the magnitude of the lateral Ksat and the slope gradient, water will either 515 

flow laterally above this impeding layer or saturate the soil layers above it. For large 516 

rainfall events coinciding with high antecedent soil moisture conditions, this can lead to 517 

saturation-excess overland flow (Elsenbeer, 2001; Bonell, 2005). Because of the relatively 518 

low Ksat-values observed already at 10–20 cm depth in the young natural fallow sites and 519 

the degraded sites (Table 2), less water will be needed there to fully saturate the soil and 520 

generate saturation-excess overland flow at these sites than at the forest sites (Figure 6). 521 

This difference can reflect the removal of the top layer in the more degraded sites by 522 
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surface erosion during past cultivation periods (cf. Ziegler et al., 2004). In fact, surface 523 

runoff was observed after 30 minutes of application of the blue dye at site number 15 524 

(degraded land).  525 

 526 

<<Figure 6>> 527 

 528 

Enhanced surface runoff in the form of saturation- or infiltration-excess can lead to higher 529 

peak flows, more soil erosion and subsequent declines in soil fertility and water quality 530 

(Ziegler et al., 2009). It can also lead to decreased groundwater recharge and potentially 531 

lower streamflow during the dry season (Bruijnzeel, 2004). Bailly et al. (1974) conducted 532 

long-term catchment and erosion studies across Madagascar, including several sites 533 

located near the current field sites. The catchment of Bailly et al. (1974) that was 534 

classified as being under naturally regenerating vegetation (‘brousse’, no age given but 535 

presumably less than 10 years old) was characterized by greater volumes of surface runoff 536 

and higher peak flows compared to a nearby closed-canopy forest catchment. However, 537 

Lacombe et al. (2015) reported gradually diminishing streamflow during 12 years of 538 

natural regeneration in an area previously under swidden cultivation in Vietnam. Flows 539 

declined both during the wet and the dry season due to a combination of better infiltration 540 

and higher vegetation water use as the area under secondary forest expanded and matured 541 

over time. Conversely, Beck et al. (2013) did not find any statistically significant trends in 542 

long-term streamflow characteristics (high flows or low flows) when combining the 543 

results for twelve meso-scale catchments in Puerto Rico undergoing major changes in 544 

secondary forest cover. Different results were obtained for individual catchments, 545 

suggesting significant spatial heterogeneity and highlighting the importance of including 546 
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multiple sites when analysing land-cover impacts on hydrological functioning of tropical 547 

catchments. 548 

Conclusions 549 

Swidden agriculture continues to be an important land-use practice in many tropical forest 550 

areas. Understanding its influences on important soil- and water-related ecosystem 551 

services is therefore important. Our study in eastern Madagascar shows that land 552 

degradation, which can arise from swidden agriculture with short fallow cycles, changes 553 

soil functioning in ways that reduce rainfall infiltration. Infiltration into the forest soil was 554 

dominated by preferential flow with a high interaction with the soil matrix, while 555 

infiltration in the degraded land was mainly due to matrix flow in the top soil layers. We 556 

found a sharp decline in soil hydraulic conductivity with depth and a low hydraulic 557 

conductivity relative to the prevailing rainfall intensities in the degraded sites, which 558 

suggest that saturated overland flow in the degraded land is common. Enhanced overland 559 

flow occurrence can result in progressive soil erosion and degradation and diminished 560 

rates of soil water- and groundwater recharge, which may ultimately impact dry-season 561 

flows in streams and rivers.  562 

Our results, further, suggest that saturated soil hydraulic conductivity at the surface 563 

increased after several years of land abandonment and forest regrowth. However, we 564 

found no significant differences at 20–30 cm depth. Full hydrological recovery of  565 

degraded sites with vegetation regrowth may, therefore, take several decades. Due to 566 

differences in soil degradation before reforestation or natural regrowth, and the short time 567 

span since reforestation (< 10 years), it remains unclear whether active replanting 568 

decreases the time required for soil hydrological restoration. Given the interest in active 569 

forest restoration in Madagascar, as in many other areas of the tropics, further work is 570 



25 

needed to more fully understand the rates at which soil hydrological functioning can be 571 

rebuilt and to quantify the extent to which active replanting, rather than passive 572 

regeneration, can contribute to more rapid rebuilding of soil- and water-related ecosystem 573 

services. 574 
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Table 1: Indicator species and fallow succession stages based on Styger et al. (2007), 802 

Klanderud et al. (2010), and Schatz (2005).  803 

Species Family Fallow stage Cropping / 

fallow cycle 

Solanum mauritianum Scop.  Solanaceae (tree) Tree fallow 1 

Clidemia hirta (L.) D. Don Melastomataceae 

(tree/shrub) 

Shrub fallow (not dominant) - 

Cryptocarya R. Br. Lauraceae (tree) - - 

Croton L. sp.  Euphorbiaceae (tree) Tree/shrub fallow 1 – 2 

Tambourissa Sonn. Monimiaceae (tree) Tree/shrub fallow 1 – 2 

Trema orientalis (Blume) Ulmaceae (tree) Tree fallow 1 – 2 

Harungana madagascariensis Lam. 

Ex Poir 

Clusiaceae (tree/shrub) Tree/shrub fallow 1 – 5 

Psiadia altissima Asteraceae (shrub/tree) Tree/shrub fallow 1 – 6 

Aframomum angustifolium (Sonn.) 

K. Schum 

Zingiberaceae (shrub, 

perennial herbaceous) 

Shrub fallow (not dominant) 2 – 6 

Lantana camara L. (invasive) Verbenaceae (shrub) Shrub fallow 2 – 6 

Rubus moluccanus L. (invasive) Rosaceae (shrub) Shrub fallow 2 – 6 

Imperata cylindrica (L.) Raeusch. Poaceae (herb/grass) Shrub fallow / grassland > 3 

Pteridium aquilinum (L.) Kuhn Dennstaedtiaceae 

(herbaceous, fern) 

Shrub fallow 3 – 7 

Sticherus flagellaris (Bory ex Willd.) 

Ching 

Gleicheniacea (fern) Shrub fallow 3 – 7 

Aristida similis Steud Poaceae (herb/grass) Shrub fallow / grassland > 6 

Hyparrhenia rufa (Nees) Stapf Poaceae (herb/grass) Shrub fallow / grassland > 6 

Psorospermum Spach Clusiaceae (shrub) Shrub fallow / grassland > 6 
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Table 2: Median soil hydraulic conductivity (Ksat) and sand, silt and clay fractions, per 804 

land-cover type. Different superscript letters denote statistically significant differences 805 

between the land cover types. 806 

 F RF NF DL 

Ksat 0–10 cm [mm h-1] 724a 203ab 161ab 45b 

Ksat 10–20 cm [mm h-1] 87a 56a 14b 20b 

Ksat 20–30 cm [mm h-1] 4.3a 0.9ab 0.9ab 0.8b 

Sand [%]* 29.2 31.6 30.6 19.8 

Silt [%]* 27.2 26.7 21.3 26.0 

Clay [%]* 43.7 40.5 45.8 53.3 

*No statistically significant differences found between land covers. Number of soil texture samples: F: 4; 807 
RF: 6; NF: 11; DL: 8.  808 

 809 

Table 3: Median values for the characteristics describing dye tracer patterns. Different 810 

superscript letters denote statistically significant differences between land-cover types. 811 

 F RF/NF DL 

Maximum depth of infiltrated blue dye [cm] 31a 25a 35b 

Maximum dye volume density [-] 0.72a 0.23b 0.53ab 

Fraction of stains smaller than 2 cm [-] 0.37a 0.49a 0.63a 

Fraction of stains larger than 20 cm [-] 0.22a 0.0a 0.10a 

Size of the stained area [cm²] 364ab 114a 567b 

 812 


