3,896 research outputs found

    The orbit of the star S2 around SgrA* from VLT and Keck data

    Full text link
    Two recent papers (Ghez et al. 2008, Gillessen et al. 2009) have estimated the mass of and the distance to the massive black hole in the center of the Milky Way using stellar orbits. The two astrometric data sets are independent and yielded consistent results, even though the measured positions do not match when simply overplotting the two sets. In this letter we show that the two sets can be brought to excellent agreement with each other when allowing for a small offset in the definition of the reference frame of the two data sets. The required offsets in the coordinates and velocities of the origin of the reference frames are consistent with the uncertainties given in Ghez et al. (2008). The so combined data set allows for a moderate improvement of the statistical errors of mass of and distance to Sgr A*, but the overall accuracies of these numbers are dominated by systematic errors and the long-term calibration of the reference frame. We obtain R0 = 8.28 +- 0.15(stat) +- 0.29(sys) kpc and M(MBH) = 4.30 +- 0.20(stat) +- 0.30(sys) x 10^6 Msun as best estimates from a multi-star fit.Comment: submitted to ApJ

    Preventive Care, Care for Children and National Health Insurance

    Get PDF
    The purpose of this paper is to examine issues related to the coverage of preventive care under national health insurance. Four specific kinds of medical care services are included under the rubric of preventive care: prenatal care; pediatric care, dental care, and preventive physicians' services for adults. We consider whether preventive care should be covered under national health insurance, and if so what is the nature of the optimal plan. Our review of the literature on the effects of medical care on health outcomes suggests that prenatal care and dental care are effective, but pediatric care (except for immunizations) and preventive doctor care for adults are not. Moreover, health outcomes in which care is effective correspond to outcomes in which income-differences in health are observed. These empirical results and the theory of health as the source of consumption externalities indicate that the optimal NHI plan should be characterized by benefits that fall as income rises. In addition, the plan should be selective rather than general with respect to the types of services covered.

    A near-IR variability study of the Galactic black hole: a red noise source with no detected periodicity

    Get PDF
    We present the results of near-infrared (2 and 3 microns) monitoring of Sgr A*-IR with 1 min time sampling using the natural and laser guide star adaptive optics (LGS AO) system at the Keck II telescope. Sgr A*-IR was observed continuously for up to three hours on each of seven nights, between 2005 July and 2007 August. Sgr A*-IR is detected at all times and is continuously variable, with a median observed 2 micron flux density of 0.192 mJy, corresponding to 16.3 magnitude at K'. These observations allow us to investigate Nyquist sampled periods ranging from about 2 minutes to an hour. Using Monte Carlo simulations, we find that the variability of Sgr A* in this data set is consistent with models based on correlated noise with power spectra having frequency dependent power law slopes between 2.0 to 3.0, consistent with those reported for AGN light curves. Of particular interest are periods of ~20 min, corresponding to a quasi-periodic signal claimed based upon previous near-infrared observations and interpreted as the orbit of a 'hot spot' at or near the last stable orbit of a spinning black hole. We find no significant periodicity at any time scale probed in these new observations for periodic signals. This study is sensitive to periodic signals with amplitudes greater than 20% of the maximum amplitude of the underlying red noise component for light curves with duration greater than ~2 hours at a 98% confidence limit.Comment: 37 pages, 2 tables, 17 figures, accepted by Ap

    The Orbit of GG Tau A

    Full text link
    We present a study of the orbit of the pre-main-sequence binary system GG Tau A and its relation to its circumbinary disk, in order to find an explanation for the sharp inner edge of the disk. Three new relative astrometric positions of the binary were obtained with NACO at the VLT. We combine these with data from the literature and fit orbit models to the dataset. We find that an orbit coplanar with the disk and compatible with the astrometric data is too small to explain the inner gap of the disk. On the other hand, orbits large enough to cause the gap are tilted with respect to the disk. If the disk gap is indeed caused by the stellar companion, then the most likely explanation is a combination of underestimated astrometric errors and a misalignment between the planes of the disk and the orbit.Comment: 5 pages, 6 figures, accepted by Astronomy and Astrophysics, new version contains changes suggested by language edito

    Orbital motion in T Tauri binary systems

    Get PDF
    Using speckle-interferometry we have carried out repeated measurements of relative positions for the components of 34 T Tauri binary systems. The projected separation of these components is low enough that orbital motion is expected to be observable within a few years. In most cases orbital motion has indeed been detected. The observational data is discussed in a manner similar to Ghez et al. (1995). However, we extend their study to a larger number of objects and a much longer timespan. The database presented in this paper is valuable for future visible orbit determinations. It will yield empirical masses for T Tauri stars that now are only poorly known. The available data is however not sufficient to do this at the present time. Instead, we use short series of orbital data and statistical distributions of orbital parameters to derive an average system mass that is independent of theoretical assumptions about the physics of PMS stars. For our sample this mass is 2.0 solar masses and thus in the order of magnitude one expects for the mass sum of two T Tauri stars. It is also comparable to mass estimates obtained for the same systems using theoretical PMS evolutionary models.Comment: Accepted by Astronomy and Astrophysic

    High angular resolution integral-field spectroscopy of the Galaxy's nuclear cluster: a missing stellar cusp?

    Get PDF
    We report on the structure of the nuclear star cluster in the innermost 0.16 pc of the Galaxy as measured by the number density profile of late-type giants. Using laser guide star adaptive optics in conjunction with the integral field spectrograph, OSIRIS, at the Keck II telescope, we are able to differentiate between the older, late-type (∌\sim 1 Gyr) stars, which are presumed to be dynamically relaxed, and the unrelaxed young (∌\sim 6 Myr) population. This distinction is crucial for testing models of stellar cusp formation in the vicinity of a black hole, as the models assume that the cusp stars are in dynamical equilibrium in the black hole potential. Based on the late-type stars alone, the surface stellar number density profile, ÎŁ(R)∝R−Γ\Sigma(R) \propto R^{-\Gamma}, is flat, with Γ=−0.27±0.19\Gamma = -0.27\pm0.19. Monte Carlo simulations of the possible de-projected volume density profile, n(r) ∝r−γ\propto r^{-\gamma}, show that Îł\gamma is less than 1.0 at the 99.73 % confidence level. These results are consistent with the nuclear star cluster having no cusp, with a core profile that is significantly flatter than predicted by most cusp formation theories, and even allows for the presence of a central hole in the stellar distribution. Of the possible dynamical interactions that can lead to the depletion of the red giants observable in this survey -- stellar collisions, mass segregation from stellar remnants, or a recent merger event -- mass segregation is the only one that can be ruled out as the dominant depletion mechanism. The lack of a stellar cusp around a supermassive black hole would have important implications for black hole growth models and inferences on the presence of a black hole based upon stellar distributions.Comment: 35 pages, 5 tables, 12 figures, accepted by Ap

    Adaptive Optics Observations of the Galactic Center Young Stars

    Full text link
    Adaptive Optics observations have dramatically improved the quality and versatility of high angular resolution measurements of the center of our Galaxy. In this paper, we quantify the quality of our Adaptive Optics observations and report on the astrometric precision for the young stellar population that appears to reside in a stellar disk structure in the central parsec. We show that with our improved astrometry and a 16 year baseline, including 10 years of speckle and 6 years of laser guide star AO imaging, we reliably detect accelerations in the plane of the sky as small as 70 microarcsec/yr/yr (~2.5 km/s/yr) and out to a projected radius from the supermassive black hole of 1.5" (~0.06 pc). With an increase in sensitivity to accelerations by a factor of ~6 over our previous efforts, we are able to directly probe the kinematic structure of the young stellar disk, which appears to have an inner radius of 0.8". We find that candidate disk members are on eccentric orbits, with a mean eccentricity of = 0.30 +/- 0.07. Such eccentricities cannot be explained by the relaxation of a circular disk with a normal initial mass function, which suggests the existence of a top-heavy IMF or formation in an initially eccentric disk.Comment: 7 pages, 4 figures, SPIE Astronomical Telescopes and Instrumentation 201

    The orbital motion of the Arches cluster — clues on cluster formation near the galactic center

    Get PDF
    The Arches cluster is one of the most massive, young clusters in the Milky Way. Located inside the central molecular zone in the inner 200 pc of the Galactic center, it formed in one of the most extreme star-forming environments in the present-day Galaxy. Its young age of only 2.5 Myr allows us to observe the cluster despite the strong tidal shear forces in the inner Galaxy. The orbit of the cluster determines its dynamical evolution, tidal stripping, and hence its fate. We have measured the proper motion of the Arches cluster relative to the ambient field from Keck/NIRC2 LGS-AO and VLT/NAOS-CONICA NGS-AO observations taken 4.3 years earlier. When combined with the radial velocity, we derive a 3D space motion of 232 ± 30 km/s for the Arches. This motion is exceptionally large when compared to molecular cloud orbits in the GC, and places stringent constraints on the formation scenarios for starburst clusters in dense, nuclear environments

    Orbits and origins of the young stars in the central parsec of the galaxy

    Get PDF
    We present new proper motions from the 10 m Keck telescopes for a puzzling population of massive, young stars located within a parsec of the supermassive black hole at the Galactic Center. Our proper motion measurements have uncertainties of only 0.07 mas yr^(−1) (3 km s^(−1) ), which is ≳7 times better than previous proper motion measurements for these stars, and enables us to measure accelerations as low as 0.2 mas yr^(−2) (7 km s^(−1) yr^(−1) ). These measurements, along with stellar line-of-sight velocities from the literature, constrain the true orbit of each individual star and allow us to directly test the hypothesis that the massive stars reside in two stellar disks as has been previously proposed. Analysis of the stellar orbits reveals only one disk of young stars using a method that is capable of detecting disks containing at least 7 stars. The detected disk contains 50% (38 of 73) of the young stars, is inclined by ~115° from the plane of the sky, and is oriented at a position angle of ∌100° East of North. The on-disk and off-disk populations have similar K-band luminosity functions and radial distributions that decrease at larger radii as ∝ r^(−2). The disk has an out-of-the-disk velocity dispersion of 28±6 km s^(−1) , which corresponds to a half-opening angle of 7°±2° , and several candidate disk members have eccentricities greater than 0.2. Our findings suggest that the young stars may have formed in situ but in a more complex geometry than a simple thin circular disk

    Tidal Capture by a Black Hole and Flares in Galactic Centres

    Full text link
    We present the telltale signature of the tidal capture and disruption of an object by a massive black hole in a galactic centre. As a result of the interaction with the black hole's strong gravitational field, the object's light curve can flare-up with characteristic time of the order of 100 sec \times (M_{bh} / 10^6 M_{Solar}). Our simulations show that general relativity plays a crucial role in the late stages of the encounter in two ways: (i) due to the precession of perihelion, tidal disruption is more severe, and (ii) light bending and aberration of light produce and enhance flares seen by a distant observer. We present our results for the case of a tidally disrupted Solar-type star. We also discuss the two strongest flares that have been observed at the Galactic centre. Although the first was observed in X-rays and the second in infra-red, they have almost identical light curves and we find it interesting that it is possible to fit the infra-red flare with a rather simple model of the tidally disrupted comet-like or planetary object. We discuss the model and possible scenarios how such an event can occur.Comment: 3 pages, 1 figur
    • 

    corecore