3,367 research outputs found

    The orbit of the star S2 around SgrA* from VLT and Keck data

    Full text link
    Two recent papers (Ghez et al. 2008, Gillessen et al. 2009) have estimated the mass of and the distance to the massive black hole in the center of the Milky Way using stellar orbits. The two astrometric data sets are independent and yielded consistent results, even though the measured positions do not match when simply overplotting the two sets. In this letter we show that the two sets can be brought to excellent agreement with each other when allowing for a small offset in the definition of the reference frame of the two data sets. The required offsets in the coordinates and velocities of the origin of the reference frames are consistent with the uncertainties given in Ghez et al. (2008). The so combined data set allows for a moderate improvement of the statistical errors of mass of and distance to Sgr A*, but the overall accuracies of these numbers are dominated by systematic errors and the long-term calibration of the reference frame. We obtain R0 = 8.28 +- 0.15(stat) +- 0.29(sys) kpc and M(MBH) = 4.30 +- 0.20(stat) +- 0.30(sys) x 10^6 Msun as best estimates from a multi-star fit.Comment: submitted to ApJ

    A near-IR variability study of the Galactic black hole: a red noise source with no detected periodicity

    Get PDF
    We present the results of near-infrared (2 and 3 microns) monitoring of Sgr A*-IR with 1 min time sampling using the natural and laser guide star adaptive optics (LGS AO) system at the Keck II telescope. Sgr A*-IR was observed continuously for up to three hours on each of seven nights, between 2005 July and 2007 August. Sgr A*-IR is detected at all times and is continuously variable, with a median observed 2 micron flux density of 0.192 mJy, corresponding to 16.3 magnitude at K'. These observations allow us to investigate Nyquist sampled periods ranging from about 2 minutes to an hour. Using Monte Carlo simulations, we find that the variability of Sgr A* in this data set is consistent with models based on correlated noise with power spectra having frequency dependent power law slopes between 2.0 to 3.0, consistent with those reported for AGN light curves. Of particular interest are periods of ~20 min, corresponding to a quasi-periodic signal claimed based upon previous near-infrared observations and interpreted as the orbit of a 'hot spot' at or near the last stable orbit of a spinning black hole. We find no significant periodicity at any time scale probed in these new observations for periodic signals. This study is sensitive to periodic signals with amplitudes greater than 20% of the maximum amplitude of the underlying red noise component for light curves with duration greater than ~2 hours at a 98% confidence limit.Comment: 37 pages, 2 tables, 17 figures, accepted by Ap

    High angular resolution integral-field spectroscopy of the Galaxy's nuclear cluster: a missing stellar cusp?

    Get PDF
    We report on the structure of the nuclear star cluster in the innermost 0.16 pc of the Galaxy as measured by the number density profile of late-type giants. Using laser guide star adaptive optics in conjunction with the integral field spectrograph, OSIRIS, at the Keck II telescope, we are able to differentiate between the older, late-type (∌\sim 1 Gyr) stars, which are presumed to be dynamically relaxed, and the unrelaxed young (∌\sim 6 Myr) population. This distinction is crucial for testing models of stellar cusp formation in the vicinity of a black hole, as the models assume that the cusp stars are in dynamical equilibrium in the black hole potential. Based on the late-type stars alone, the surface stellar number density profile, ÎŁ(R)∝R−Γ\Sigma(R) \propto R^{-\Gamma}, is flat, with Γ=−0.27±0.19\Gamma = -0.27\pm0.19. Monte Carlo simulations of the possible de-projected volume density profile, n(r) ∝r−γ\propto r^{-\gamma}, show that Îł\gamma is less than 1.0 at the 99.73 % confidence level. These results are consistent with the nuclear star cluster having no cusp, with a core profile that is significantly flatter than predicted by most cusp formation theories, and even allows for the presence of a central hole in the stellar distribution. Of the possible dynamical interactions that can lead to the depletion of the red giants observable in this survey -- stellar collisions, mass segregation from stellar remnants, or a recent merger event -- mass segregation is the only one that can be ruled out as the dominant depletion mechanism. The lack of a stellar cusp around a supermassive black hole would have important implications for black hole growth models and inferences on the presence of a black hole based upon stellar distributions.Comment: 35 pages, 5 tables, 12 figures, accepted by Ap

    Adaptive Optics Observations of the Galactic Center Young Stars

    Full text link
    Adaptive Optics observations have dramatically improved the quality and versatility of high angular resolution measurements of the center of our Galaxy. In this paper, we quantify the quality of our Adaptive Optics observations and report on the astrometric precision for the young stellar population that appears to reside in a stellar disk structure in the central parsec. We show that with our improved astrometry and a 16 year baseline, including 10 years of speckle and 6 years of laser guide star AO imaging, we reliably detect accelerations in the plane of the sky as small as 70 microarcsec/yr/yr (~2.5 km/s/yr) and out to a projected radius from the supermassive black hole of 1.5" (~0.06 pc). With an increase in sensitivity to accelerations by a factor of ~6 over our previous efforts, we are able to directly probe the kinematic structure of the young stellar disk, which appears to have an inner radius of 0.8". We find that candidate disk members are on eccentric orbits, with a mean eccentricity of = 0.30 +/- 0.07. Such eccentricities cannot be explained by the relaxation of a circular disk with a normal initial mass function, which suggests the existence of a top-heavy IMF or formation in an initially eccentric disk.Comment: 7 pages, 4 figures, SPIE Astronomical Telescopes and Instrumentation 201

    Stellar Dynamics at the Galactic Center with an Extremely Large Telescope

    Full text link
    We discuss experiments achievable via monitoring of stellar dynamics near the massive black hole at the Galactic center with a next generation, extremely large telescope (ELT). Given the likely observational capabilities of an ELT and current knowledge of the stellar environment at the Galactic center, we synthesize plausible samples of stellar orbits around the black hole. We use the Markov Chain Monte Carlo method to evaluate the constraints that orbital monitoring places on the matter content near the black hole. Results are expressed as functions of the number N of stars with detectable orbital motions and the astrometric precision dtheta and spectroscopic precision dv at which stellar proper motions and radial velocities are monitored. For N = 100, dtheta = 0.5 mas, and dv = 10 km/s -- a conservative estimate of the capabilities of a 30 meter telescope -- the extended matter distribution enclosed by the orbits will produce measurable deviations from Keplerian motion if >1000 Msun is enclosed within 0.01 pc. The black hole mass and distance to the Galactic center will be measured to better than ~0.1%. Lowest-order relativistic effects, such as the prograde precession, will be detectable if dtheta < 0.5 mas. Higher-order effects, including frame dragging due to black hole spin, requires dtheta < 0.05 mas, or the favorable discovery of a compact, highly eccentric orbit. Finally, we calculate the rate at which monitored stars undergo detectable nearby encounters with background stars. Such encounters probe the mass function of stellar remnants that accumulate near the black hole. We find that ~30 encounters will be detected over a 10 yr baseline for dtheta = 0.5 mas.Comment: 14 pages, 5 figures; discussion no longer aperture-specific (TMT -> ELT), matches ApJ versio

    Testing for periodicities in near-IR light curves of Sgr A

    Get PDF
    We present the results of near-infrared (2 ÎŒm) monitoring of Sgr A*-IR with 1 minute time sampling using laser guide star adaptive optics (LGS AO) system at the Keck II telescope. Sgr A*-IR was observed continuously for up to three hours on each of seven nights, between 2006 May and 2007 August. Sgr A*-IR is detected at all times and is continuously variable. These observations allow us to investigate Nyquist sampled periods ranging from about 2 minutes to an hour. Of particular interest are periods of ~20 min, which corresponds to a quasi-periodic (QPO) signal claimed based upon previous near-infrared observations and interpreted as the orbit of a ’hot spot’ at or near the last stable orbit of a spinning black hole. We investigate these claims by comparing periodograms of the light curves with models for red noise and find no significant deviations that would indicate QPO activity at any time scale probed in the study. We find that the variability of Sgr A* is consistent with a model based on correlated noise with a power spectrum having a frequency dependence of ~ f^(2.5), consistent with that observed in AGNs. Furthermore, the periodograms show power down to the minimum sampling time of 2 min, well below the period of the last stable orbit of a maximally spinning black hole, indicating that the Sgr A*-IR light curves observed in this study is unlikely to be from the Keplerian motion of a single ’hot spot’ of orbiting plasma

    High Proper Motion Stars in the Vicinity of Sgr A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy

    Get PDF
    Over a two year period (1995-1997), we have conducted a diffraction-limited imaging study at 2.2 microns of the inner 6"x6" of the Galaxy's central stellar cluster using the Keck 10-m telescope. The K band images obtained reveal a large population of faint stars. We use an unbiased approach for identifying and selecting stars to be included in this proper motion study, which results in a sample of 90 stars with brightness ranging from K=9-17 and velocities as large as 1,400+-100 km/sec. Compared to earlier work (Eckart et al. 1997; Genzel et al. 1997), the source confusion is reduced by a factor of 9, the number of stars with proper motion measurement in the central 25 arcsec^2 of our galaxy is doubled, and the accuracy of the velocity measurements in the central 1 arcsec^2 is improved by a factor of 4. The peaks of both the stellar surface density and the velocity dispersion are consistent with the position of the unusual radio source and blackhole candidate, Sgr A*, suggesting that Sgr A* is coincident (+-0."1) with the dynamical center of the Galaxy. As a function of distance from Sgr A*, the velocity dispersion displays a falloff well fit by Keplerian motion about a central dark mass of 2.6(+-0.2)x10^6 Mo confined to a volume of at most 10^-6 pc^3, consistent with earlier results. Although uncertainties in the measurements mathematically allow for the matter to be distributed over this volume as a cluster, no realistic cluster is physically tenable. Thus, independent of the presence of Sgr A*, the large inferred central density of at least 10^12 Mo/pc^3, which exceeds the volume-averaged mass densities found at the center of any other galaxy, leads us to the conclusion that our Galaxy harbors a massive central black hole.Comment: 19 pages, 8 figures, accepted for publications in the Astrophysical Journa

    Orbits and Masses in the T Tauri System

    Full text link
    We investigate the binary star T Tauri South, presenting the orbital parameters of the two components and their individual masses. We combined astrometric positions from the literature with previously unpublished VLT observations. Model fits yield the orbital elements of T Tau Sa and Sb. We use T Tau N as an astrometric reference to derive an estimate for the mass ratio of Sa and Sb. Although most of the orbital parameters are not well constrained, it is unlikely that T Tau Sb is on a highly elliptical orbit or escaping from the system. The total mass of T Tau S is rather well constrained to 3.0 +0.15/-0.24 M_sun. The mass ratio Sb:Sa is about 0.4, corresponding to individual masses of M_Sa = 2.1+/-0.2 M_sun and M_Sb = 0.8+/-0.1 M_sun. This confirms that the infrared companion in the T Tauri system is a pair of young stars obscured by circumstellar material.Comment: 10 pages, 11 figures, accepted by Astronomy and Astrophysic
    • 

    corecore