63 research outputs found
Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth
Once escaped from the quiescence niche, precursor cells interact with stromal components that support their survival, proliferation, and differentiation. We examined interplays between human myogenic precursor cells (mpc) and monocyte/macrophages (MP), the main stromal cell type observed at site of muscle regeneration. mpc selectively and specifically attracted monocytes in vitro after their release from quiescence, chemotaxis declining with differentiation. A DNA macroarray–based strategy identified five chemotactic factors accounting for 77% of chemotaxis: MP-derived chemokine, monocyte chemoattractant protein-1, fractalkine, VEGF, and the urokinase system. MP showed lower constitutive chemotactic activity than mpc, but attracted monocytes much strongly than mpc upon cross-stimulation, suggesting mpc-induced and predominantly MP-supported amplification of monocyte recruitment. Determination of [3H]thymidine incorporation, oligosomal DNA levels and annexin-V binding showed that MP stimulate mpc proliferation by soluble factors, and rescue mpc from apoptosis by direct contacts. We conclude that once activated, mpc, which are located close by capillaries, initiate monocyte recruitment and interplay with MP to amplify chemotaxis and enhance muscle growth
Clinical Heterogeneity of Duchenne Muscular Dystrophy (DMD): Definition of Sub-Phenotypes and Predictive Criteria by Long-Term Follow-Up
International audienceBACKGROUND: To explore clinical heterogeneity of Duchenne muscular dystrophy (DMD), viewed as a major obstacle to the interpretation of therapeutic trials METHODOLOGY/PRINCIPAL FINDINGS: A retrospective single institution long-term follow-up study was carried out in DMD patients with both complete lack of muscle dystrophin and genotyping. An exploratory series (series 1) was used to assess phenotypic heterogeneity and to identify early criteria predicting future outcome; it included 75 consecutive steroid-free patients, longitudinally evaluated for motor, respiratory, cardiac and cognitive functions (median follow-up: 10.5 yrs). A validation series (series 2) was used to test robustness of the selected predictive criteria; it included 34 more routinely evaluated patients (age>12 yrs). Multivariate analysis of series 1 classified 70/75 patients into 4 clusters with distinctive intellectual and motor outcomes: A (early infantile DMD, 20%): severe intellectual and motor outcomes; B (classical DMD, 28%): intermediate intellectual and poor motor outcome; C (moderate pure motor DMD, 22%): normal intelligence and delayed motor impairment; and D (severe pure motor DMD, 30%): normal intelligence and poor motor outcome. Group A patients had the most severe respiratory and cardiac involvement. Frequency of mutations upstream to exon 30 increased from group A to D, but genotype/phenotype correlations were restricted to cognition (IQ>71: OR 7.7, 95%CI 1.6-20.4, p6 at 8 yrs" with "normal or borderline mental status" reliably assigned patients to group C (sensitivity: 1, specificity: 0.94). These criteria were also predictive of "early infantile DMD" and "moderate pure motor DMD" in series 2. CONCLUSIONS/SIGNIFICANCE: DMD can be divided into 4 sub-phenotypes differing by severity of muscle and brain dysfunction. Simple early criteria can be used to include patients with similar outcomes in future therapeutic trials
Widespread Myalgia and Chronic Fatigue: Phagocytes from Macrophagic Myofasciitis Patients Exposed to Aluminum Oxyhydroxide-Adjuvanted Vaccine Exhibit Specific Inflammatory, Autophagic, and Mitochondrial Responses
(1) Background: Macrophagic myofasciitis (MMF) is an inflammatory histopathological lesion demonstrating long-term biopersistence of vaccine-derived aluminum adjuvants within muscular phagocytic cells. Affected patients suffer from widespread myalgia and severe fatigue consistent with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a poorly understood disorder suspected to result from chronic immune stimulation by infectious and inorganic particles. (2) Methods: In this study we determined the immuno-metabolic properties of MMF phagocytic cells compared to controls, at rest and upon exposure to aluminum oxyhydroxide adjuvant, with or without adsorbed antigens, using protein quantification and an oxygen consumption assay. (3) Results: MMF and control cells similarly internalized the adjuvant and vaccine but MMF cells specifically expressed Rubicon and Nox2, two molecules unique to the LC3-associated phagocytosis (LAP) machinery, a non-canonical autophagic pathway able to downregulate canonical autophagy. MMF cells exhibited an altered inflammatory secretome, producing more pain-inducing CXC chemokines and less TNF-α than controls, consistent with chronic myalgia and exhaustion of the immune system previously documented in ME/CFS. MMF cells exhibited mitochondrial metabolism dysfunction, with exacerbated reaction to adjuvanted vaccine, contrasting with limited spare respiratory capacity and marked proton leak weakening energy production. (4) Conclusions: MMF phagocytes seemingly use LAP to handle aluminum oxyhydroxide vaccine particles, secrete pain-inducing molecules, and exhibit exacerbated metabolic reaction to the vaccine with limited capacity to respond to ongoing energetic requests
- …