51 research outputs found
Structural and functional analysis of the Oct-6 Schwann cell enhancer
A defining feature in the biology of higher vertebrates is their extended
and complex nervous system that allows them to rapidly integrate and process
environmental information, control body posture, regulate homeostasis of their
internal organs and develop complex behaviour. The principal cell types that make
up the nervous system are the neuron and glial cell. Neurons exist in a wide range
of different shapes but are generally built up of a soma, containing the nucleus, its
dendritic arborisation and its single axon
Orthogonal analysis of mitochondrial function in Parkinson’s disease patients
The etiopathology of Parkinson’s disease has been associated with mitochondrial defects at genetic, laboratory, epidemiological, and clinical levels. These converging lines of evidence suggest that mitochondrial defects are systemic and causative factors in the pathophysiology of PD, rather than being mere correlates. Understanding mitochondrial biology in PD at a granular level is therefore crucial from both basic science and translational perspectives. In a recent study, we investigated mitochondrial alterations in fibroblasts obtained from PD patients assessing mitochondrial function in relation to clinical measures. Our findings demonstrated that the magnitude of mitochondrial alterations parallels disease severity. In this study, we extend these investigations to blood cells and dopamine neurons derived from induced pluripotent stem cells reprogrammed from PD patients. To overcome the inherent metabolic heterogeneity of blood cells, we focused our analyses on metabolically homogeneous, accessible, and expandable erythroblasts. Our results confirm the presence of mitochondrial anomalies in erythroblasts and induced dopamine neurons. Consistent with our previous findings in fibroblasts, we observed that mitochondrial alterations are reversible, as evidenced by enhanced mitochondrial respiration when PD erythroblasts were cultured in a galactose medium that restricts glycolysis. This observation indicates that suppression of mitochondrial respiration may constitute a protective, adaptive response in PD pathogenesis. Notably, this effect was not observed in induced dopamine neurons, suggesting their distinct bioenergetic behavior. In summary, we provide additional evidence for the involvement of mitochondria in the disease process by demonstrating mitochondrial abnormalities in additional cell types relevant to PD. These findings contribute to our understanding of PD pathophysiology and may have implications for the development of novel biomarkers and therapeutic strategies.</p
A Simple Nonviral Method to Generate Human Induced Pluripotent Stem Cells Using SMAR DNA Vectors
Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein–Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors.</p
A Simple Nonviral Method to Generate Human Induced Pluripotent Stem Cells Using SMAR DNA Vectors
Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein–Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors.</p
Cancer Stemness in Apc- vs. Apc/KRAS-Driven Intestinal Tumorigenesis
Constitutive activation of the Wnt pathway leads to adenoma formation, an obligatory step towards intestinal cancer. In view of the established role of Wnt in regulating stemness, we attempted the isolation of cancer stem cells (CSCs) from Apc- and Apc/KRAS-mutant intestinal tumours. Whereas CSCs are present in Apc/KRAS tumours, they appear to be very rare (®-catenin intracellular stabilization
Involvement of extracellular vesicle microRNA clusters in developing healthy and Rett syndrome brain organoids
Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control. EV miRNA and protein expression profiles were characterized at day 0, day 13, day 40, and day 75. Several members of the hsa-miR-302/367 cluster were identified as having a time-dependent expression profile with RTT-specific alterations at the latest developmental stage. Moreover, the miRNA species of the chromosome 14 miRNA cluster (C14MC) exhibited strong upregulation in RTT forebrain organoids irrespective of their spatiotemporal location. Together, our results suggest essential roles of the C14MC and hsa-miR-302/367 clusters in EVs during normal and RTT-associated neurodevelopment, displaying promising prospects as biomarkers for monitoring RTT progression. Graphical Abstract: (Figure presented.)</p
Recommended from our members
Modeling Rett syndrome with human patient-specific forebrain organoids
Copyright © 2020 Gomes, Fernandes, Vaz, Silva, Bekman, Xapelli, Duarte, Ghazvini, Gribnau, Muotri, Trujillo, Sebastião, Cabral and Diogo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Engineering brain organoids from human induced pluripotent stem cells (hiPSCs) is a powerful tool for modeling brain development and neurological disorders. Rett syndrome (RTT), a rare neurodevelopmental disorder, can greatly benefit from this technology, since it affects multiple neuronal subtypes in forebrain sub-regions. We have established dorsal and ventral forebrain organoids from control and RTT patient-specific hiPSCs recapitulating 3D organization and functional network complexity. Our data revealed a premature development of the deep-cortical layer, associated to the formation of TBR1 and CTIP2 neurons, and a lower expression of neural progenitor/proliferative cells in female RTT dorsal organoids. Moreover, calcium imaging and electrophysiology analysis demonstrated functional defects of RTT neurons. Additionally, assembly of RTT dorsal and ventral organoids revealed impairments of interneuron's migration. Overall, our models provide a better understanding of RTT during early stages of neural development, demonstrating a great potential for personalized diagnosis and drug screening.We also acknowledge financial support from Fundação para a Ciência e a Tecnologia (FCT), Portugal, through iBB, Institute for Bioengineering and Biosciences (UIDB/04565/2020) and from Programa Operacional Regional de Lisboa 2020 (Project No. 007317). AG was supported by FCT (PD/BD/128373/2017).info:eu-repo/semantics/publishedVersio
A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells
Progress in elucidating the molecular and cellular pathophysiology of neuropsychiatric disorders has been hindered by the limited availability of living human brain tissue. The emergence of induced pluripotent stem cells (iPSCs) has offered a unique alternative strategy using patient-derived functional neuronal networks. However, methods for reliably generating iPSC-derived neurons with mature electrophysiological characteristics have been difficult to develop. Here, we report a simplified differentiation protocol that yields electrophysiologically mature iPSC-derived cortical lineage neuronal networks without the need for astrocyte co-culture or specialized media. This protocol generates a consistent 60:40 ratio of neurons and astrocytes that arise from a common forebrain neural progenitor. Whole-cell patch-clamp recordings of 114 neurons derived from three independent iPSC lines confirmed their electrophysiological maturity, including resting membrane potential (−58.2±1.0 mV), capacitance (49.1±2.9 pF), action potential (AP) threshold (−50.9±0.5 mV) and AP amplitude (66.5±1.3 mV). Nearly 100% of neurons were capable of firing APs, of which 79% had sustained trains of mature APs with minimal accommodation (peak AP frequency: 11.9±0.5 Hz) and 74% exhibited spontaneous synaptic activity (amplitude, 16.03±0.82 pA; frequency, 1.09±0.17 Hz). We expect this protocol to be of broad applicability for implementing iPSC-based neuronal network models of neuropsychiatric disorders.Molecular Psychiatry advance online publication, 18 April 2017; doi:10.1038/mp.2017.56
Epigenetic characterization of the FMR1 promoter in induced pluripotent stem cells from human fibroblasts carrying an unmethylated full mutation
Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an unmethylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene
Modeling Rett Syndrome With Human Patient-Specific Forebrain Organoids
Engineering brain organoids from human induced pluripotent stem cells (hiPSCs) is a
powerful tool for modeling brain development and neurological disorders. Rett syndrome
(RTT), a rare neurodevelopmental disorder, can greatly benefit from this technology,
since it affects multiple neuronal subtypes in forebrain sub-regions. We have established
dorsal and ventral forebrain organoids from control and RTT patient-specific hiPSCs
recapitulating 3D organization and functional network complexity. Our data revealed
a premature development of the deep-cortical layer, associated to the formation of
TBR1 and CTIP2 neurons, and a lower expression of neural progenitor/proliferative
cells in female RTT dorsal organoids. Moreover, calcium imaging and electrophysiology
analysis demonstrated functional defects of RTT neurons. Additionally, assembly of
RTT dorsal and ventral organoids revealed impairments of interneuron’s migration.
Overall, our models provide a better understanding of RTT during early stages of
neural development, demonstrating a great potential for personalized diagnosis and
drug screening
- …