11 research outputs found

    A hybrid model of uniform design and artificial neural network for the optimization of dietary metabolizable energy, digestible lysine, and methionine in quail chicks

    No full text
    A uniform design (UD) was used to construct models to explain the growth response of Japanese quails to dietary metabolizable energy (ME), and digestible methionine (dMet) and lysine (dLys) under tropical condition. In total, 100 floor pens with seven birds each were fed 25 UD different diets containing 25 ME (2808-3092 kcal/kg), dMet (0.31-0.49% of diet), and dLys (0.91-1.39% of diet) levels from 7 to 14 d of age. A platform of artificial neural network based on UD (ANN-UD) was generated to describe the growth response of the birds to dietary inputs using random search. Artificial neural networks of body weight gain (BWG) and feed conversion ratio (FCR) were optimized using random search algorithm. The optimization the ANN-UD results showed that maximum BWG may be achieved with 2995 kcal ME/kg, 0.45% dMet, and 1.18% dLys of diet; and minimum FCR may be obtained with 3000 kcal ME/kg, 0.45% dMet, and 1.17% dLys of diet. The result of this study showed that a ANN and UD hybrid model can be used successfully to optimize the nutritional requirements of quail chicks

    Estimation of Digestible Lysine Requirements of Japanese Quail during the Starter Period

    No full text
    The aim of this study was the estimation of digestible lysine requirements of Japanese quail during the 7-21d period. Graduation level of L-lysine.HCL were added to the basal diet at the expense of corn starch to create different levels of digestible lysine ranged from 0.75 to 1.35% of diet. Growth performance and carcass composition were evaluated during the experiment. The results showed that incremental levels of digestible lysine significantly affected the body weight gain (BWG), feed conversion ratio (FCR), feed intake (FI), breast meat yield (BMY) and thigh meat yield (TMY). Either linear broken- line or quadratic broken line model were used to get break points of digestible lysine as a requirement. Based on linear broken line analysis, the break points for FCR and BMY were 0.99 and 1.04 % of diet, respectively. Using the quadratic broken-line model, the estimated Lys requirements for BWG, FCR, and BMY were 1.11, 1.04, and 1.15% of diet, respectively. The results showed that the Lys needs for optimum BMY was higher than BWG and FCR
    corecore