91 research outputs found

    Fisheries geographical information system for Greater Mumbai region in Maharashtra, India

    Get PDF
    Geographical information system (GIS) is an invaluable decision support tool, designed to address spatially related problems for management of natural resources. The power of GIS lies in its ability to visualise and relate various types of geo-referenced spatial and non-spatial data allowing users to analyse them. In India, use of GIS in fisheries management is yet to find its rightful place. An effort has been made in the present study to design and organise a fisheries spatial information system for Greater Mumbai region in Maharashtra to serve as a macro-level database for the planners and administrators, which can be used for querying, analysing and displaying datasets in the form of graphs and summarised tabular data for all the fisheries infrastructural facilities. This GIS will be of immense help to planners, managers and administrators in quick storing, retrieving and updating the required information for management of fisheries in Greater Mumbai region

    Molecular Defects of Vitamin B6 Metabolism Associated with Neonatal Epileptic Encephalopathy

    Get PDF
    Neonatal epileptic encephalopathy (NEE) is a seizure disorder that occurs within hours from birth and arises from central nervous system (CNS) dysfunctions of various origins, including metabolic or inflammatory conditions, abnormalities of brain structure and cerebrovascular diseases. In some rare circumstances, NEE is refractory to conventional antiepileptic drugs (AEDs) but responds very well to treatment with vitamin B6 in the form of either pyridoxine (PN) or pyridoxal 5’-phosphate (PLP). Vitamin B6-dependent NEE derives either from a deficiency of PLP, from inborn errors in enzymes, such as pyridoxine 5’-phosphate oxidase (PNPOx) and pyridoxal kinase (PL kinase) involved in the PLP salvage pathway or from inherited mutations of enzymes, such as -aminoadipic semialdehyde dehydrogenase (also known as antiquitin) involved in other metabolic pathways, which lead to the accumulation of intermediates that react with PLP, reducing its availability. Clinical phenotypes observed in vitamin B6-dependent NEE patients may include fetal distress, hypoglycemia, acidosis, anemia, and asphyxia. The health state of untreated patients may undergo progressive deterioration, which can lead to death within weeks. Surviving children are usually mentally retarded and are dependent on vitamin B6 to control the disease. Several known cases of B-dependent NEE, however do not or only mildly manifest some of the above clinical features, and are characterized by mild to moderate developmental delay. This chapter will review the molecular mechanism of how in-born errors in PNPOx or antiquitin affect PLP levels in the cell and lead to NEE. We will also review important clinical and general features associated with PLP dependent NEE, and provide some directions for clinicians to diagnose and treat or manage the diseas

    Design and Development of Mechanical Solar Tracking System

    Full text link
    In recent years, the growing global interest in the conservation of environment has provided a fresh motivation for research in the area of solar energy utilization. Already, installation of solar energy extraction devices such as solar panels, solar water heaters, solar cookers etc. is becoming popular in urban buildings. Most of these devices consist of a solar receptor that is kept facing the sun during the day, but the sun moves from east to west and the efficiency of the panel decreases. If one could trap this extra energy source then the efficiency of the solar panel would be increased. A tracking mechanism following the sun would achieve this aim. An attempt has been made to develop a simple yet efficient sun tracking mechanism using a motor, a speed reduction mechanism and real timer. The mechanism has been designed such that the sunrays falling on the panel are always perpendicular to the panel resulting in increase in efficiency of the electricity generation. This report presents, in detail, the design and construction adopted to develop the functional model that was fabricated and tested for performance which yielded the efficiency increase of 28.41% as compared to the conventional stationary panel position

    Crystal Structures of Human Pyridoxal Kinase in Complex with the Neurotoxins, Ginkgotoxin and Theophylline: Insights into Pyridoxal Kinase Inhibition

    Get PDF
    Several drugs and natural compounds are known to be highly neurotoxic, triggering epileptic convulsions or seizures, and causing headaches, agitations, as well as other neuronal symptoms. The neurotoxic effects of some of these compounds, including theophylline and ginkgotoxin, have been traced to their inhibitory activity against human pyridoxal kinase (hPL kinase), resulting in deficiency of the active cofactor form of vitamin B6, pyridoxal 5′-phosphate (PLP). Pyridoxal (PL), an inactive form of vitamin B6 is converted to PLP by PL kinase. PLP is the B6 vitamer required as a cofactor for over 160 enzymatic activities essential in primary and secondary metabolism. We have performed structural and kinetic studies on hPL kinase with several potential inhibitors, including ginkgotoxin and theophylline. The structural studies show ginkgotoxin and theophylline bound at the substrate site, and are involved in similar protein interactions as the natural substrate, PL. Interestingly, the phosphorylated product of ginkgotoxin is also observed bound at the active site. This work provides insights into the molecular basis of hPL kinase inhibition and may provide a working hypothesis to quickly screen or identify neurotoxic drugs as potential hPL kinase inhibitors. Such adverse effects may be prevented by administration of an appropriate form of vitamin B6, or provide clues of how to modify these drugs to help reduce their hPL kinase inhibitory effects

    Functional and structural properties of pyridoxal reductase (PdxI) from Escherichia coli. A pivotal enzyme in the vitamin B6 salvage pathway

    Get PDF
    Pyridoxine 4-dehydrogenase (PdxI), a NADPH-dependent pyridoxal reductase, is one of the key players in the Escherichia coli pyridoxal 5'-phosphate (PLP) salvage pathway. This enzyme, which catalyses the reduction of pyridoxal into pyridoxine, causes pyridoxal to be converted into PLP via the formation of pyridoxine and pyridoxine phosphate. The structural and functional properties of PdxI were hitherto unknown, preventing a rational explanation of how and why this longer, detoured pathway occurs, given that, in E. coli, two pyridoxal kinases (PdxK and PdxY) exist that could convert pyridoxal directly into PLP. Here, we report a detailed characterisation of E. coli PdxI that explains this behaviour. The enzyme efficiently catalyses the reversible transformation of pyridoxal into pyridoxine, although the reduction direction is thermodynamically strongly favoured, following a compulsory-order ternary-complex mechanism. In vitro, the enzyme is also able to catalyse PLP reduction and use NADH as an electron donor, although with lower efficiency. As with all members of the aldo-keto reductase (AKR) superfamily, the enzyme has a TIM barrel fold; however, it shows some specific features, the most important of which is the presence of an Arg residue that replaces the catalytic tetrad His residue that is present in all AKRs and appears to be involved in substrate specificity. The above results, in conjunction with kinetic and static measurements of vitamins B6 in cell extracts of E. coli wild-type and knockout strains, shed light on the role of PdxI and both kinases in determining the pathway followed by pyridoxal in its conversion to PLP, which has a precise regulatory function

    Peptidomimetic and Non- Peptidomimetic Derivatives as Possible SARS-CoV-2 Main Protease (Mpro) Inhibitors

    Get PDF
    To design novel inhibitors of the SARS-CoV-2 main protease (Mpro), we investigated the binding mode of the recently reported α-ketoamide inhibitors of this enzyme. Following, we utilized in-silico screening to identify 168 peptidomimetic and non-peptidomimetic compounds that are high probability Mpro binding candidates. The compounds were synthesized in 5 to 10 mg for initial screening for their potential inhibition of Mpro using Fluorescence Resonance Energy Transfer (FRET) assay. The study was conducted using the main protease, MBP-tagged (SARS-CoV-2) Assay Kit (BPS Bioscience, #79955-2), and the fluorescence due to enzymatic cleavage of substrate measured using BMG LABTECH CLARIOstar™, a fluorescent microplate reader, with an excited/emission wavelength of 360 nm/460 nm, respectively. The FRET assay showed 29 compounds to exhibit lower fluorescence compared to the positive control, indicating inhibitory activity, with three of the compounds exhibiting over 50% enzymatic inhibition. The assay average scores were plotted as dose inhibition curves using variable parameter nonlinear regression to calculate the IC50 values. To design more potent inhibitors, an in-silico molecular docking simulation using the SARS-CoV-2 Mpro crystal structure was conducted to investigate on a molecular level the key binding residues at the active site, as well as the possible binding modes and affinity of the lead inhibitors. Additionally, an in-silico study of the compounds\u27 molecular properties and physicochemical profiles was performed to predict their pharmacokinetic properties and assess their suitability as potential orally active drug candidates.https://scholarscompass.vcu.edu/gradposters/1139/thumbnail.jp

    Characterization of the Escherichia coli pyridoxal 5'-phosphate homeostasis protein (YggS): Role of lysine residues in PLP binding and protein stability

    Get PDF
    The pyridoxal 5'-phosphate (PLP) homeostasis protein (PLPHP) is a ubiquitous member of the COG0325 family with apparently no catalytic activity. Although the actual cellular role of this protein is unknown, it has been observed that mutations of the PLPHP encoding gene affect the activity of PLP-dependent enzymes, B6 vitamers and amino acid levels. Here we report a detailed characterization of the Escherichia coli ortholog of PLPHP (YggS) with respect to its PLP binding and transfer properties, stability, and structure. YggS binds PLP very tightly and is able to slowly transfer it to a model PLP-dependent enzyme, serine hydroxymethyltransferase. PLP binding to YggS elicits a conformational/flexibility change in the protein structure that is detectable in solution but not in crystals. We serendipitously discovered that the K36A variant of YggS, affecting the lysine residue that binds PLP at the active site, is able to bind PLP covalently. This observation led us to recognize that a number of lysine residues, located at the entrance of the active site, can replace Lys36 in its PLP binding role. These lysines form a cluster of charged residues that affect protein stability and conformation, playing an important role in PLP binding and possibly in YggS function

    Bacterial laccases: some recent advances and applications

    Get PDF
    Laccases belong to the large family of multi-copper oxidases (MCOs) that couple the one-electron oxidation of substrates with the four-electron reduction of molecular oxygen to water. Because of their high relative non-specific oxidation capacity particularly on phenols and aromatic amines as well as the lack of requirement for expensive organic cofactors, they have found application in a large number of biotechnological fields. The vast majority of studies and applications were performed using fungal laccases, but bacterial laccases show interesting properties such as optimal temperature above 50 °C, optimal pH at the neutral to alkaline range, thermal and chemical stability and increased salt tolerance. Additionally, bacterial systems benefit from a wide range of molecular biology tools that facilitates their engineering and achievement of high yields of protein production and set-up of cost-effective bioprocesses. In this review we will provide up-to-date information on the distribution and putative physiological role of bacterial laccases and highlight their distinctive structural and biochemical properties, discuss the key role of copper in the biochemical properties, discuss thermostability determinants and, finally, review biotechnological applications with a focus on catalytic mechanisms on phenolics and aromatic amines.info:eu-repo/semantics/publishedVersio

    Use of aromatic polyamide membranes in desalination

    No full text
    173-177Piperazine containing polymers, having no 'H' atom at amide nitrogen have been prepared from diaminobenzanilides and diacid chlorides by low temperature polycondensation method. These polymers have been characterised by inherent viscosity, percent moisture regain, solubility, IR and thermal analysis. Amount of chlorine absorbed by the polyamides has been calculated by titrating polymer suspension with sodium thiosulphate. Membranes were cast from the polymer solution in dimethyl acetamide containing lithium chloride as an additive. These membranes' were studied for reverse osmosis (RO) performance in salt water with and without chlorine containing medium.</span
    corecore